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Preface

This booklet of abstracts contains the extended abstracts that will be presented at
the 19th International Workshop on Project Management and Scheduling (PMS 2024),
held at the University of Bern, Switzerland, from April 2�5, 2024.

PMS is an international workshop series initiated by the EURO Working Group on
Project Management and Scheduling. The workshop takes place every two years at
di�erent locations in Europe and brings together researchers and industry profession-
als from Computer Science, Operations Research, Optimization Engineering, Math-
ematical Programming, and Industrial Engineering. The scienti�c program covers a
wide range of topics related to Project Management and Scheduling, including both
theoretical and applied research.

We received 54 submissions for PMS 2024. After a peer-review process with two reviews
per submission, 52 extended abstracts were accepted for presentation at the workshop.
The abstracts are listed below in alphabetical order based on the �rst author's last
name. Presenting authors are indicated with 1. Thank you to the dedicated review-
ers, who generously contributed their time and expertise to evaluate the submitted
abstracts.

It is my great pleasure to announce our esteemed plenary speakers of the PMS 2024
workshop � Nicole Megow from the University of Bremen (EURO Plenary), who will
talk about recent advancements in scheduling with predictions; Federico Della Croce Di
Dojola from Politecnico di Torino, who introduces a novel exact algorithm for the trans-
portation problem; and industry experts Julien Darlay and Léa Blaise from Hexaly,
who will present the mathematical optimization solver Hexaly Optimizer, formerly
known as LocalSolver.

When visiting Bern, don't miss the opportunity to stroll through the charming old town
and enjoy the marvelous views of the Bernese Alps. The guided tours on Wednesday
and the Conference Dinner on Thursday promise unforgettable experiences at some
of the unique spots our city has to o�er. During the Conference Dinner, we will
announce the winners of the Best Student Paper Award. We have received outstanding
submissions from our young researchers and can't wait to share them with you.

I would like to extend my gratitude to our generous sponsors and partners, as well
as to my colleagues from the International Program and Organizing Committee, who
have invested countless hours in ensuring the success of this event. A big thank you to
you, dear participants, for joining us from all over the world. Welcome to Bern!

Bern, 2nd of April Norbert Trautmann, Conference Chair PMS 2024

https://www.euro-online.org/websites/pms/
https://www.euro-online.org/websites/pms/
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Scheduling with predictions

Nicole Megow

University of Bremen

Uncertainty poses a signi�cant challenge on scheduling and planning tasks, where
jobs may have unknown processing times or machines run at unknown speeds. How-
ever, assuming a complete lack of a priori information is overly pessimistic. With the
rise of machine-learning methods and data-driven applications, access to predictions
about input data or algorithmic actions becomes feasible. Yet, blindly trusting these
predictions might lead to very poor solutions, due to the absence of quality guarantees.

In this talk, we explore recent advancements in the popular framework of Al-
gorithms with Predictions, which integrates such error-prone predictions into online
algorithm design. We examine various prediction models and error measures, showcas-
ing learning-augmented algorithms for non-clairvoyant scheduling with strong error-
dependent performance guarantees. We demonstrate the potential of imperfect predic-
tions to enhance scheduling e�ciency and address uncertainty in real-world scenarios.

Iterated Inside Out: a new exact algorithm for the transportation problem

Federico Della Croce Di Dojola

Politecnico di Torino

We propose a novel exact algorithm for the transportation problem, one of the
paradigmatic network optimization problems. The algorithm, denoted Iterated Inside
Out, requires in input a basic feasible solution and is composed by two main phases
that are iteratively repeated until an optimal basic feasible solution is computed. In
the �rst �inside� phase, the algorithm progressively improves upon a given basic solu-
tion by increasing the value of several non-basic variables with negative reduced cost.
This phase typically outputs a non-basic feasible solution interior to the constraint set
polytope. The second �out� phase moves in the opposite direction by iteratively setting
to zero several variables until a new improved basic feasible solution is reached. Ex-
tensive computational tests show that the proposed approach strongly outperforms all
versions of network and linear programming algorithms available in commercial solvers
such as Cplex and Gurobi and other exact algorithms available in the literature.

Scheduling with Hexaly Optimizer

Julien Darlay, Léa Blaise

Hexaly (previously LocalSolver)

Hexaly Optimizer, formerly known as LocalSolver, is a "model and run" mathe-
matical optimization solver based on various exact and heuristic methods. This presen-
tation will introduce the di�erent components of Hexaly Optimizer through scheduling
problems, from the user model to the algorithms enabling it to �nd quality solutions
and lower bounds. We will �rst show how its modeling formalism can be used to ex-
press various academic and industrial scheduling problems using only generic operators.
These models are based on interval and list decision variables and have the advantage
of being very compact, which enables the solver to handle even large-scale problems.
We will then give an overview of the primal and dual techniques Hexaly Optimizer uses
to solve such problems: local search reinforced with a solution repair algorithm based
on constraint propagation to �nd quality solutions, and energetic and single-machine
relaxations to �nd quality lower bounds.

1
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Project Risk prioritisation using Monte Carlo simulation

Acebes F1, Gonzalez-Varona JM2, Lopez-Paredes A2 and Pajares J1

1 University of Valladolid, Spain

fernando.acebes@uva.es, javier.pajares@uva.es
2 University of Malaga, Spain

jmgonzalezva@uma.es, loppar@uma.es

Keywords: Probability-Impact Matrix, Quantitative Risk Prioritisation, Monte Carlo
Simulation, MCSimulRisk.

1 Introduction

In project risk management processes, the project manager is commonly faced with
the challenge of determining the relative importance of various sources of risk to direct
management e�orts and maintain project pro�tability. Managers need help deciding which
risks to address as a priority. This di�culty is due to the large number of risk sources and
the complexity of assessing which are the most critical, requiring a detailed approach. In
this context, any method that simpli�es risk prioritisation and is accessible to practitioners
involved in project management is appreciated (Ward 1999).

Risk matrices are widely accepted tools used in various industrial sectors to assess
and rank risks based on the probability of risk occurrence and potential impact. However,
the probability-impact matrix, in particular, has severe limitations (Cox 2008, Duijm
2015, Levine 2012). Its inability to consider the complex interrelationships between risks,
the need for precise estimates of probability and impact, and its di�culty in integrating the
impact of risks across multiple project objectives are questioned, often leading to con�icts.

In response to the limitations of risk matrices, this study proposes a methodology to
prioritise the risks identi�ed in the project through a quantitative analysis using Monte
Carlo simulation. In line with the work of Creemers S. et. al. (2014), we propose a risk-
driven approach whose contribution is twofold: (1) we incorporate all the risks identi�ed
in the simulation model (and not only the aleatoric uncertainty of the activities), and (2)
we prioritise the risks based on the total impact of each of them on the total duration and
cost objectives of the project.

2 Methodology

The �owchart following the proposed method for prioritising project risks by applying
quantitative Monte Carlo simulation-based techniques is depicted in Fig. 1.

The procedure starts with 'risk identi�cation', which entails detecting risk factors that
can potentially adversely in�uence the project's development. The risk identi�cation phase
is carried out in the context of planning after having previously de�ned the precise limits
of the project, established the personnel involved, delineated the tasks to be carried out
and drawn up the timetable of activities. In this process, a wide range of tools are used,
including but not limited to brainstorming, Delphi techniques and stakeholder consultation.
The result of this �rst step is a list of identi�ed risks.

Next, we estimate the probability of occurrence of each identi�ed risk and their possible
impact on the project's objectives. Following the proposal of Hillson (2014), we consider
three types of uncertainty that can become project risks, which we must model according to
a distribution function: aleatoric, stochastic and epistemic uncertainty. We do not consider
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Fig. 1. Flowchart of the quantitative risk prioritisation process

ontological uncertainty, as it cannot be modelled since we do not know it at all. Each
type of uncertainty will be modelled according to a distribution function representing such
behaviour. Thus, for example, stochastic uncertainty will be modelled with a Bernoulli-
type distribution function, a uniform distribution function can model epistemic uncertainty,
and aleatoric uncertainty by normal, triangular, or Beta-Pert distribution functions (Vose
2008). The result of this second step is to obtain probability distribution functions for
probabilities and impacts for each of the risks identi�ed in the previous process.

The risk information obtained in the previous step is fed into the project model and
activity information. With all the info uni�ed in the same model, we carry out a Monte
Carlo simulation using the software 'MCSimulRisk' (Acebes F. et. al. 2023). We carry out
a �rst simulation, including all the information in the simulation model, and we obtain
the main statistics of the simulation (mean values, standard deviations and percentiles
corresponding to total duration and cost). Then, we will conduct as many simulations as
risks we identi�ed in the project. However, we will consider that the corresponding risk
does not exist in each of these simulations. In other words, in each of these last simulations,
we will assume that the probability of occurrence of the risk is zero (Pi=0) and its impact
is also zero (Ii=0). The resulting model we introduce into the Monte Carlo simulator is the
same as the initial one, except that the corresponding risk (its probability and impact) is
zero. In the same way, as we have done in the �rst simulation, we obtain the statistics for
each of these simulations in the following ones.

Finally, we obtained two prioritised lists of the identi�ed risks, one according to the
impact on the duration objective and a di�erent one according to the impact on the project
cost objective. To achieve this result, we compare the values of duration and total project
cost obtained in the �rst simulation (which includes the complete project model) against
each subsequent simulation (where the corresponding risk has been removed). For this cal-
culation, given that we are dealing with stochastic data, we have had to choose a percentile
that represents the organisation's risk appetite (Value at Risk).

3 Case study

This section brie�y shows a case study where we applied our quantitative risk prioritisa-
tion proposal. We compared the results obtained with those from a traditional qualitative
analysis using the risk or probability-impact matrix. With this simple example, we want
to go through each of the phases of our model until the �nal result is achieved. The exam-
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ple shown can be extended to any project by following the steps outlined in the previous
section.

The project used as an example consists of eight activities, the duration of which has
been modelled using a normal distribution function to facilitate the reader's understanding
(but a di�erent one could have been used). The �rst step in the process is to identify the
project risks. In this case, the project team has identi�ed �ve risks: three impacting activity
duration objectives (R1 to R3) and two impacting activity cost objectives (R3 and R4).

The project team must then estimate the likelihood and impact of each risk. To do this,
it has all the information from the current project, information from previous projects, the
opinions of all stakeholders and the team's experience. Once the probability and impact
estimates for each risk are known and modelled as distribution functions, they are fed into
the project model for Monte Carlo simulation. We chose P80 as the percentile representing
our Value at Risk (VaR), resulting in a total project duration of 16,31 weeks and 40.389
euros. The �nal result of the risk prioritisation for the selected percentile is shown in Table
1.

Table 1. Quantitative risk prioritisation results

Prob - Imp Matrix Duration (weeks) Cost (Euros)
Risk P I PxI Rank Dur_Ri Di�_Di Rank_D Cost_Ri Di�_Ci Rank_C
R1 A B 0,07 5 15,83 0,48 2 40.038 801 4
R2 M A 0,2 1 14,84 1,47 1 38.959 1.879 2
R3 MB MA 0,08 4 16,05 0,26 3 40.199 639 5
R4 B A 0,12 3 16,31 0 4 37.856 2.982 1
R5 A M 0,14 2 16,31 0 4 39.291 1.547 3

The �rst group of columns (columns 2 to 5) of Table 1 refers to the prioritisation of risks
after using the risk matrix. Before this, the project team has to design a probability-impact
matrix speci�c to the project under implementation. For each identi�ed risk, and with the
estimation of the probability and impact of each one, the result of each risk level is obtained
and, �nally, by ordering the values obtained, the ranking for each risk is represented in
Table 1. Risk R2 is the highest priority, according to this method, and risk R1 is the one
to which the least attention should be paid. The prioritisation result using the probability-
impact matrix will be compared with our proposal, represented in the following group of
columns.

Columns 6 to 8 include the results of prioritising risks relative to the total duration,
while the last columns (9 to 11) include the prioritisation considering the cost impact.
Column 8 (Rank D) includes the risks' ranking according to their importance on the total
duration of the project. Column 11 (Rank C) shows the order of importance of the risks
according to their �nal impact on the total cost. We note that the results are di�erent from
each other (impact on duration and impact on cost) and di�erent from those obtained by
applying the risk matrix.

With this proposed method, we obtain quantitative results for both duration and cost,
which we use to rank the risks according to their importance (Table 1). We not only know
the ranking of the risks by their importance in the project, but we also know the real
quanti�ed impact on the total cost and duration objectives. Depending on the importance
of one factor or another in the project, the project manager will pay more attention to one
risk. Another striking fact is that the risks that could impact cost objectives (R4 and R5)
are not re�ected in the impact on total duration. These risks are the least important in the
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ranking in terms of duration. The same is invalid for risks impacting duration objectives
(R1 to R3). These impact the project's total cost and can become more critical (higher
priority) than other risks directly a�ect the cost objective (R2 is more critical in the cost
objective than R3). The project's cost depends on the activity's variable costs, which in
turn depend on the duration of the activity.

4 Conclusion

This research aims to present an alternative to using the probability and impact matrix
to identify the most critical risk in a project that could a�ect the achievement of its
objectives. To this end, by maintaining a risk-driven approach, a quantitative approach
based on Monte Carlo simulation has been proposed. It provides numerical results on the
importance of the risks concerning their impact on the total duration and cost objectives.
The proposed methodology o�ers notable advantages compared to other risk prioritisation
methods, especially as opposed to the conventional risk matrix.

In the context of the case study, it has been observed that the ranking of risks varies
signi�cantly depending on the method used, as con�rmed by our �ndings. Our methodology
has allowed us to obtain independent numerical values for the impact of risks on the
total cost and duration objectives, which is valuable for project managers, who can make
decisions based on the prioritisation of risks and the predominant project objective, either
duration or total cost, in case they do not coincide.

The results indicate that risks that impact the cost of the activities do not in�uence the
project's total duration, while those that impact the duration also impact the total cost.
Sometimes, this impact can be more signi�cant than that caused by a risk that only a�ects
activity cost. These �ndings suggest that this quantitative prioritisation methodology has
signi�cant potential for use by both academics wishing to extend their research into project
risk and practitioners seeking to apply it to real projects on a day-to-day basis.

Funding

This research has been partially �nanced by Junta de Castilla y Leon (Spain) with
Grant VA180P20.
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Scenario-Based Optimization for a Multi-Skilled
Resource-Constrained Project Scheduling Problem with

Resource Flexibility

Niels-Fabian Baur and Julia Rieck

University of Hildesheim, Germany
Operations Research Group, Institute for Business Administration and Information Systems

{baur;rieck}@bwl.uni-hildesheim.de

Keywords: Multi-skill RCPSP, Resource flexibility, Stochasticity, Proactive scheduling

1 Introduction

An extension of the Resource-Constrained Project Scheduling Problem (RCPSP) is
known as the Multi-Skilled RCPSP (MS-RCPSP). In the MS-RCPSP, resources are repre-
sented by employees possessing diverse skill sets, which are essential for executing various
project activities. In most publications on the MS-RCPSP, the skill levels of resources
do not exert an influence on the duration of activities. Here in this paper, it is assumed
that these resources exhibit varying levels of proficiency in their respective skills and a
correlation exists between the skill levels and activity durations. This approach is similar
to Hanne and Nickel (2005), Heimerl and Kolisch (2010), Xiao et al. (2013), Dhib and
Soukhal (2015), and Zheng et al. (2017). In addition, this paper endeavors to enhance the
problem by introducing greater scheduling flexibility for resources. Particularly, it is possi-
ble that the number of employees allocated to an activity can fluctuate over time with no
prescribed limit for resource allocation. This implies that activities may remain unstaffed
even after initiation, making them preemptive in nature. Furthermore, activity durations
are not predetermined but calculated based on resource allocation, similar to the RCPSP
with flexible resource profiles (Naber and Kolisch 2014). Consequently, we refer to the prob-
lem addressed herein as the Resource-Flexible Multi-Skilled RCPSP (RF-MS-RCPSP) in
alignment with this resource-centric perspective.

The real project environment is characterized by fluctuations and randomness. To el-
evate the problem to a more comprehensive and realistic level, it is crucial to introduce
stochastic elements. For example, unexpected fluctuations in activity workloads can occur.
By embracing stochasticity, uncertainties and their potential impact on project scheduling
and resource allocation can be taken into account. Until now, only a few stochastic MS-
RCPSPs have been described in the literature such as Felberbauer et al. (2019), Alvanchi
et al. (2012), and Chen et al. (2014). The following approach captures the uncertain na-
ture of project execution in practical scenarios, thereby enabling better decision-making.
In real applications, project plans created in advance have to be adapted repeatedly to the
actual conditions. Utilizing our model, it becomes possible to establish a schedule proac-
tively, considering a variety of scenarios. This schedule is constructed in such a way that it
remains largely feasible even in the presence of unexpected delays, necessitating only mod-
erate adjustments. The fundamental idea behind this approach is that last-minute changes
are susceptible to errors, especially when they impact employees with limited availability,
such as during vacation periods. Therefore, the objective is to devise a schedule that an-
ticipates various contingencies, reducing the need for significant last-minute modifications
and mitigating potential disturbances.
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2 Mathematical Model Formulation

The mathematical model and corresponding notation are based on the model proposed
by Baur and Rieck (2020). A project is conceptualized as an activity-on-node network. Here,
project activities, denoted by i, j ∈ V , serve as nodes, and the arcs ⟨i, j⟩ ∈ E connecting
these nodes represent precedence relationships between the activities. Notably, the duration
of activities depends on resource allocations and therefore cannot be determined in advance.
Instead, an estimated processing time Dπ

i is assigned to each activity i across various
scenarios π ∈ Π. This parameter signifies the anticipated time required for a single worker
with average proficiency to execute the activity in the corresponding scenario. Allocation
of multiple resources has the potential to diminish activity duration, and there exists no
restriction on the number of resources that can be assigned to an activity. For instance,
when two workers (in opposite to one worker) with average skills engage in an activity, the
duration is reduced by half. To formulate this, a predefined set of resources k ∈ K and a
set of skills are identified. Each activity i necessitates a distinct set of skills s ∈ Si, and
resources possess skills at predefined levels Lks, denoted as {0, 0.5, 1, 1.5, 2} for each skill
and resource. Moreover, the binary parameter θkt indicates for resource k the availability
at time t, given that resources are partially renewable.

The problem is formalized as a time-index-based mixed-integer linear program. It con-
tains binary decision variables, denoted as xπit, indicating whether an activity i starts at
time t in scenario π or not. Given that the duration of an activity is dependent on the
resource allocation, additional decision variables, denoted as rπikt, are introduced to signify
whether a resource k is assigned to an activity i at time t for scenario π. To linearize the
constraints, auxiliary binary variables yπit are introduced. These variables serve to indi-
cate whether an activity i is continued after time t in scenario π, which makes it possible
to distinguish between an interruption and the completion of an activity. Based on this
information, decision-relevant durations Pπ

i ≥ 0 can be derived.

min.
∑

t∈T

tx0n+1,t + α (
∑

π∈Π\{0}

∑

t∈T

(txπn+1,t − tx0n+1,t)) + β(
∑

π∈Π

∑

i∈V

∑

k∈K

∑

t∈T

(υπikt + ωπ
ikt)) (1)

Objective function (1) consists of three components. The first component aims to minimize
the total project duration (PD) in scenario π = 0, equivalent to the deterministic case.
The second component focuses on minimizing the extension of the project duration in
other scenarios π ̸= 0, relative to the deterministic case. The third component penalizes
disparities in resource allocations across scenarios compared to the deterministic case. With
this approach, a schedule is searched that minimizes the project duration and the possible
extensions that can occur due to the scenarios. The goal is to find a single schedule a priori
that requires minimal adjustments of resource allocation to compensate for fluctuations in
the overall project completion times. The following constraints must be taken into account:

s.t.
∑

t∈T

xπit = 1 ∀i ∈ V, π ∈ Π (2)

∑

t∈T

txπjt −
∑

t∈T

txπit ≥ Pπ
i ∀⟨i, j⟩ ∈ E, π ∈ Π (3)

∑

k∈K

∑

t∈T

Lksr
π
ikt ≥ Dπ

i ∀i ∈ V \{0, n+ 1}, s ∈ Si, π ∈ Π (4)

t∑

τ=0

xπiτ ≥ rπikt ∀i ∈ V \{0, n+ 1}, k ∈ K, t ∈ T, π ∈ Π (5)

∑

i∈V

rπikt ≤ θkt ∀k ∈ K, t ∈ T, π ∈ Π (6)
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d̄∑

τ=t

∑

k∈K

rπikτ ≥ yπit ∀i ∈ V, t ∈ T, π ∈ Π (7)

d̄∑

τ=t

∑

k∈K

rπikτ ≤Myπit ∀i ∈ V, t ∈ T, π ∈ Π (8)

∑

t∈T

(
yπit +

t∑

τ=0

xπiτ − 1

)
≤ Pπ

i ∀i ∈ V \ {0, n+ 1}, π ∈ Π (9)

r0ikt − rπikt = υπikt, r
π
ikt − r0ikt = ωπ

ikt ∀i ∈ V, k ∈ K, t ∈ T, π ∈ Π \ {0} (10)
rπikt = 0 ∀i = {0, n+ 1}, k ∈ K, t ∈ T, π ∈ Π (11)
Pπ
i ≥ 0 ∀i ∈ V, π ∈ Π (12)
rπikt, x

π
it, y

π
it ∈ {0, 1} ∀i ∈ V, k ∈ K, t ∈ T, π ∈ Π (13)

Equations (2) specify that each activity i must be started exactly once for each scenario.
Constraints (3) guarantee adherence to precedence relationships in each scenario. With
Constraints (4), it is determined that the estimated processing time of an activity i is
accounted for in all scenarios for each skill s ∈ Si required for execution. The start of
an activity in a specific scenario is defined as the moment of the first resource allocation
in Conditions (5). If an activity is resumed after an interruption, this does not count
as a new start. Constraints (6) ensure that each resource can be assigned to exactly one
activity in a scenario at the same time, depending on the availability of the resource at that
time. The auxiliary variables yπit are introduced in Conditions (7) and (8). If resources are
assigned after time t, the activity is considered as incomplete and yπit = 1 holds. Variables
xπit describe the time t at which an activity i starts and variables yπit indicate whether an
activity is already completed in a scenario π. Leveraging this information, activity durations
for specific scenarios are specified in Constraints (9), also taking potential interruptions into
account. Equations (10) calculate the inequalities in resource allocations between scenarios
π ̸= 0 and scenario 0. Constraints (11) ensure that no resources are allocated to fictitious
activities. Finally, all decision variables are defined in (12) and (13).

3 Preliminary Results and Outlook

In order to test the model outlined in Section 2, we generated 20 instances comprising
n = 10 real activities based on the MSLIB library (Snauwaert and Vanhoucke 2022). The
instances have been adjusted so that they differ in their number of precedence relationships.
The first 10 instances contain on average four times as many precedence relationships
between real activities. We therefore refer to them as series networks, while the other
10 instances can be regarded as parallel networks. The instances were further enhanced
with problem-specific parameters, and scenarios were created for each instance by drawing
symmetric triangularly distributed random numbers for the estimated processing times.
These exhibit a level of uncertainty of 0.3 and 0.5 around the expected value, which is
identical to the deterministic case π = 0. The tests were conducted on a server equipped
with two 2.1 GHz processors and 384 GB of RAM with CPLEX 22.1 in GAMS 39.3.

The chosen modeling approach, in particular the inclusion of scenarios, is associated
with a considerable computational effort, which makes it difficult to find feasible solutions
even for our small instances. To alleviate this computational challenge, we introduced
additional cuts and employed Benders decomposition. This involved formulating a deter-
ministic master problem, including variables for the deterministic case (π = 0), along with
sub-problems that incorporate the remaining variables corresponding to other scenarios,
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capturing the associated uncertainty. Furthermore, we initially generated 30 scenarios, clus-
tered them, and selected a subset of 6 scenarios that was as representative as possible in
order to reduce the number of scenarios and thus the computational effort.

Table 1. Mean results for 20 instances with n = 10 real activities and different levels of uncertainty

uncertainty PD ∆ PD # replanning GAP [%] CPU [s]

Results for series networks

0.3 35.1 2.3 1.8 38.6 10341.6
0.5 20.6 4.5 0.2 42.5 12165.7

Results for parallel networks

0.3 28.4 2.9 19.9 48.4 12548.3
0.5 21.7 2.5 0.2 44.7 11697.7

Table 1 summarizes mean results across all instances, presenting the objective function
components (PD, ∆ PD, and # replanning), the associated CPLEX gap, and the CPU
runtime in seconds. These results depend on uncertainty levels and network characteristics.
A 4-hour maximum runtime was set for all instances. Within this limit, eight instances were
solved optimally. For all other instances, however, the resulting gaps remained remarkably
high, averaging over 40%. In the future, longer runtimes should be tested for an evaluation
of the generated upper and lower bounds. Tests with 20 real activities yielded a feasible
solution for only one instance, emphasizing the need for heuristic solutions to handle larger
instances and a higher number of scenarios.
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1 Introduction

When planning large labor-intensive projects, it is convenient to rely on a baseline
schedule, which gives a preview of logistical requirements. However, project data is often
subject to uncertainty. Jobs may in particular be interrupted due to fortuitous causes of
unavailability. Disruptions occurring between the planning and the actual execution of
the project may cause the baseline schedule to become unfeasible. Part of the project
must then be rescheduled, possibly entailing large costs. This justifies resorting to robust
approaches to ensure that some jobs can keep their planned starting times in spite of
disruptions. It is exactly the purpose of anchor robustness, a two-stage robust approach
introduced in Bendotti et al. (2022): a baseline schedule is computed in which a subset of so-
called anchored jobs have their starting times guaranteed against any disruption in a given
uncertainty set. Anchor robustness is thought as a middle ground between guaranteeing
all starting times, which is often overconservative, and guaranteeing only the makespan of
the project, in which case the baseline schedule may change completely.

The existing literature on anchor robustness focuses on processing time uncertainty.
This work aims at extending some of those results so that non-availability periods, called
NA-periods in the sequel, can be taken into account. NA-periods are widespread in real-
life applications: they can be known in advance, such as week-ends or holidays, or be
uncertain, such as breakdowns or missing workforce. NA-periods are particularly studied in
the context of machine scheduling: see Schmidt (2000) and Lee (2004) for surveys. Schedule
robustness measures of the literature include the expected sum of weighted deviation from
the baseline schedule (Herroelen & Leus 2004). It is used in Lambrechts et al. (2008) and
Lambrechts et al. (2011) for the RCPSP with uncertain resource breakdowns.

In the case under study, a project described by a set of jobs with precedence constraints
has to be scheduled. A ground set of NA-periods that may occur between the planning
and the execution of the project is given. Each of those NA-periods, if it occurs, prevents
a subset of jobs from being processed during a given time interval. Anchor-robustness in
the context of uncertain NA-periods aims at guaranteeing the starting time of some jobs
against any realization of NA-periods within an uncertainty set.

Contributions The aim of this work is to provide a study of the Anchor-Robust Project
Scheduling Problem with uncertain NA-periods. An in-depth analysis is performed to de-
vise dedicated computing tools in the case of budgeted uncertainty (Bertsimas & Sim
2003), which is a more realistic model of uncertainty from a practical point of view. Three
anchoring problems with budgeted NA-uncertainty are considered. Polynomial algorithms
are proposed for two of them and an inapproximability result is given for the last one.
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2 NA-PERT

An instance of the classical scheduling problem known as PERT is defined by I =
(J,G, p) where J is a set of jobs, G = (J,A) is a directed acyclic precedence graph with
s, t dummy source (resp. sink) nodes and p ∈ RJ

+ is a vector of processing times. A feasible
schedule x ∈ RJ

+ of I must verify precedence constraints, namely xj ≥ xi + pi for every
(i, j) ∈ A. In this work, a variant of PERT is considered in which additional constraints
arise in the form of NA-periods, defined as follows:

Definition 1 (NA-period). Let J be a set of jobs. An NA-period for J is a pair u =
([au, bu), J

u) where 0 ≤ au < bu and Ju ⊆ J . The NA-period u means that the jobs of Ju

cannot be performed during the semi open time interval [au, bu).

In the sequel, an instance I = (J,G, p) of PERT as well as a finite set U of NA-periods
for J are given. The subset of NA-periods affecting job i is denoted by U i = {u ∈ U |i ∈ Ju}.
The set U represents a ground set of NA-periods, only a subset of which will actually
realize and affect the jobs. Notation δ will typically be used to designate such a subset of
realized NA-periods. The notion of realization will fully make sense once NA-uncertainty
is introduced in Section 3.

It is assumed that jobs satisfy the resumable execution hypothesis, meaning that a job,
if interrupted, resumes as soon as it is available again. The starting and completion times
of jobs when subset of NA-periods δ ⊆ U realizes can be translated as functions of time.

Definition 2 (Starting and completion time functions). Let i be a job. Let δ ⊆ U .
The starting time function Sδ

i : R+ → R+ and the completion time function Cδ
i : R+ → R+

are such that, for any τ ∈ R+:

Sδ
i (τ) = min

(
[τ,+∞) \

⋃

u∈δ∩Ui

[au, bu)

)
Cδ

i (τ) = min
{
τ ′ ≥ Sδ

i (τ), λ
δ∩Ui

(τ, τ ′) = pi

}

where λδ∩Ui

(τ, τ ′) is the available time left by the NA-periods of δ ∩ U i between τ and τ ′.

The variant of PERT under study can now be defined based on those functions.

Definition 3 (NA-PERT). Iδ = (J,G, p, δ) is an instance of NA-PERT if I = (J,G, p)
is an instance of PERT and δ ⊆ U is a subset of NA-periods. A vector y ∈ RJ

+ is a schedule
for Iδ if it satisfies the following conditions:

Sδ
i (yi) = yi for every i ∈ J (1)

yj ≥ Cδ
i (yi) for every (i, j) ∈ A (2)

Condition (1) is equivalent to yi /∈ [au, bu) for every u ∈ δ ∩ U i, it prevents a job from
starting during an NA-period of δ that affects it. Condition (2) means that the available
time between the starting times of jobs i and j must be sufficient to perform job i entirely if
(i, j) ∈ A. Without any NA-period, it leads to the usual precedence constraint yj ≥ yi+pi.

Note that NA-PERT is a special case of the variant of PERT with time-dependent
completion times presented in Minoux (2007).

Since jobs s and t are dummy source and sink jobs used to represent the beginning and
the end of the project respectively, it is assumed in the sequel that they are not affected
by any NA-period. It is also assumed that ys = 0 in any schedule.

Example 1. Consider a project with J = {s, 1, 2, 3, t}, the precedence graph in Figure 1a
and the processing times in Figure 1b. Let also U = {u1, u2, u3} be a ground set of three
NA-periods described by Figure 1c.
Figures 1d and 1e give feasible schedules for two subsets δ of realized NA-periods. Note
that in Figure 1e, job 2 can be processed during NA-period u2 since it only affects job 1. ♢
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(e) Schedule for δ = {u1, u2}

Fig. 1: Example of NA-PERT

3 Anchor robustness with NA-uncertainty

The aim of this work is to extend anchor robustness, introduced for processing-time
uncertainty in Bendotti et al. (2022), to uncertainty on NA-periods, an uncertainty model
called NA-uncertainty from now on. An NA-uncertainty realization is a subset of NA-
periods δ ⊆ U . The NA-uncertainty set is defined by a subset ∆ of 2U .

Budgeted uncertainty sets (Bertsimas & Sim 2003) are widely studied due to their con-
venient structure and to the control offered on conservativity through the budget parameter.
The subsequent results concern anchoring problems using the budgeted NA-uncertainty set.

Definition 4 (Budgeted NA-uncertainty set). The budgeted NA-uncertainty set with
budget Γ ∈ {0, . . . , |U |} is ∆(U, Γ ) = {δ ⊆ U | |δ| ≤ Γ}

Anchorage and anchored sets can now be defined.

Definition 5 (Anchored set). Let x be a schedule of I = (J,G, p) and let ∆ be an
NA-uncertainty set. H ⊆ J is x-anchored if for any δ ∈ ∆ there exists a schedule yδ of
(J,G, p, δ) that satisfies xi = yδi for every i ∈ H.

In the sequel, three natural problems involving anchored sets will be considered:

Problem 1 (AnchRobCheck). Input: An instance I = (J,G, p) of PERT, an NA-uncertainty
set ∆, a schedule x of I and a subset H ⊆ J .
Question: Check if H is x-anchored.

Problem 2 (AnchRobFind). Input: An instance I = (J,G, p) of PERT, an NA-uncertainty
set ∆ and a subset H ⊆ J .
Question: Find a schedule x of I with minimum makespan such that H is x-anchored.

Problem 3 (AnchRobMaxWeight). Input: An instance I = (J,G, p) of PERT, an NA-
uncertainty set ∆, a schedule x of I and weights (wi)i∈J .
Question: Find a subset H ⊆ J with maximum weight such that H is x-anchored.
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A characterization of anchored sets that can then be used to solve anchoring problems
is now given. To that end, a function is introduced based on completion time functions.

Definition 6 (Worst-case longest path function). Let ∆ be an NA-uncertainty set.
For any i, j ∈ J , the worst-case longest path function L∆

ij : R+ → R+ is such that, for any
τ ∈ R+:

L∆
ij(τ) = max

(i1,...,ir)∈Pij

δ∈∆

Cδ
ir−1
◦ Cδ

ir−2
◦ · · · ◦ Cδ

i1(τ)

where Pij is the set of i-j paths in the precedence graph G.

Intuitively, achieving anchor-robustness in a schedule requires the starting times to be
scattered enough to absorb uncertainty. One would then want to create sufficiently large
gaps to overcome any uncertainty realization.The following theorem shows that the gaps
between jobs ensuring anchor-robustness are related to functions L∆

ij of Definition 6.

Theorem 1 (Anchored set characterization). Let x be a schedule of I = (J,G, p).
Let ∆ be an NA-uncertainty set. H ⊆ J is x-anchored if and only if xj ≥ L∆

ij(xi) for every
i, j ∈ H ∪ {s} and SU

i (xi) = xi for every i ∈ H.

Let us now focus on solving anchoring problems. First, it can be shown that the
worst-case longest path function L∆

ij is computable in polynomial time. It follows that
AnchRobCheck and AnchRobFind can be solved in polynomial time by combining the
characterization of Theorem 1 and the computation of L∆

ij .

Theorem 2 (Polynomialility of AnchRobCheck). AnchRobCheck under budgeted NA-
uncertainty can be solved in polynomial time.

Theorem 3 (Polynomialility of AnchRobFind). AnchRobCheck under budgeted NA-
uncertainty can be solved in polynomial time.

Finally, it can be shown that AnchRobMaxWeight is not approximable within constant
ratio using a reduction from the Maximum Independent Set problem and the inapprox-
imability result from Håstad (1999).

Theorem 4 (Inapproximability of AnchRobMaxWeight). AnchRobMaxWeight for
a budgeted NA-uncertainty set is not approximable within constant ratio, even with Γ = 1
and binary weights, unless P = NP .
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1 Introduction

Temporal analysis on project networks has been one of the most studied topics in the
project management and scheduling arena. From the early study of Kelley (1963) on the
Critical Path Method in the Sixties, many researchers addressed the problem of modeling
project activities and constraints to minimize the project completion time (makespan).
Special attention has been deserved on the relation between the minimum makespan of
the project and the longest path of the project network in the quest of defining the so-
called “critical” activities, i.e., those activities responsible for the increase of the project
completion time when delayed from their earliest start (finish) time and/or a variation of
their durations happens. When activity durations are fixed and given, the temporal analysis
consists of executing a forward and a backward recursion to calculate the earliest and the
latest start (finish) times of the activities. When the difference between the earliest and
latest start times (total float) of an activity is zero also the difference between the earliest
and latest finish time is zero and the activity is said to be critical.

Several authors addressed the concept of criticality of an activity giving different defini-
tions based on the type of temporal relationships (Finish-to-Start precedences, Generalized
Precedence Relationships (GPRs), feeding precedences) of the project (see, e.g., Bianco et.
al. (2022), Bianco et. al. (2023), Elmaghraby and Kamburowski (1992), Quintanilla et. al.
(2012), Valls and Lino (2001)). Notwithstanding, a shared definition brings together these
contributions, that is, an activity is critical if it lies on a longest path (critical path) of the
project network. In this work, we wish to investigate if this still applies when the activity
durations are not fixed and given but are unknown variables, to be determined to minimize
the project makespan. In particular, we assume that the duration di of an activity i ranges
in a given interval, that is, di ∈ [dmin

i , dmax
i ].

Our research questions are as follows: Are the activity floats, calculated respectively on
the start and finish times, still equal? If the floats are different, is it however necessary that
they should be both equal to zero to identify a critical activity? Since activity durations are
variable and then the optimal duration of an activity evaluated with the forward and back-
ward recursions could be different, are these durations equal when the activity is critical? Is
an activity belonging to both the longest path obtained with the forward and backward recur-
sions critical? Does it exist a vector of activity durations such that an activity is critical if
and only if it belongs to a longest path of the project network with that activity durations?

When activities’ durations are not fixed, it is simple to show that the traditional concept
of critical activity remains valid if we have only Finish-to-Start relations among activities.
Oppositely, in case of GPRs, including Start-to-Start (SS), Start-to-Finish (SF), Finish-to-
Start (FS), and Finish-to-Finish (FF) relationships, that traditional concept is no longer
valid, as we will show, and a more general characterization of criticality is required.
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2 Forward and Backward Recursions

We consider an acyclic project network and then activities i = 1, . . . , n are assumed
topologically indexed. For ease of presentation of the results, but w.l.o.g., we assume zero
time lags. We consider the additional dummy activities 0 (initial) and n + 1 (final), and
additional precedences (0, i) of type SS and (i, n + 1) of type FS, for i = 1, . . . n, to
force activity i, if necessary, to start (finish) not earlier (later) than the project start
(completion). Given any feasible duration di ∈ [dmin

i , dmax
i ], for each activity i, let us

denote with N(d) the GPRs project network related to that activity durations. A GPRs
project network can be equivalently represented by a standardized network (Bartusch et.
al. 1988) where only one type of precedence relations is considered. In particular, the
SS-standardized network represents precedence relations with respect to activity starting
times. Let tij(di, dj) be the length of arc (i, j) equal to the minimum difference between the
starting times of activities j and i, according to precedence relation (i, j), i.e., tij(di, dj) =
0, di,−dj , di − dj , if precedence (i, j) is of type SS, FS, SF, and FF, respectively. Let us
denote with ℓ

N(d)
h→k the length of the longest path from node h to node k, with h < k,

in the SS-standardized project network N(d), if such a path exists. Similarly, the FF-
standardized network represents precedence relations with respect to activity finish times.
In this representation, the length t̂ij(di, dj) of arc (i, j) is the minimum difference between
the finish times of activities j and i, according to precedence relation (i, j): t̂ij(di, dj) =
dj − di, dj ,−di, 0, if precedence (i, j) is of type SS, FS, SF, and FF, respectively. Let us
denote with ℓ̂

N(d)
h→k the length of the longest path from node h to node k, with h < k,

in the FF-standardized network of project network N(d), if such a path exists. While in
general tij(di, dj) may be different from t̂ij(di, dj), it is easy to show that the lengths of
the paths between 0 and n + 1 do not depend on the type of network standardization,
therefore ℓN(d)

0→i + ℓ
N(d)
i→n+1 = ℓ̂

N(d)
0→i + ℓ̂

N(d)
i→n+1, for any given (real) activity i, and ℓ

N(d)
0→n+1 =

ℓ̂
N(d)
0→n+1 = Cd

max, where Cd
max is the minimum project length with the given activity duration

di ∈ [dmin
i , dmax

i ], for each activity i. In the following, unless otherwise stated, we will refer
to the SS-standardized network representation.

An optimal duration, denoted with dFW
i , of activity i is the minimum value in the

range [dmin
i , dmax

i ], that allows i to start at ESi, assuming ES0 = 0. We can compute
dFW
i by the following forward (FW) recursion. Since increasing di will not increase length
thi(dh, di) of arc (h, i), for the calculation of ESi we can initially consider di = dmax

i and
calculate ESi = max(h,i)∈Γ−(i) {ESh + thi}, where Γ−(i) is the set of incoming arcs (h, i)

of i and thi = thi(d
FW
h , dmax

i ).Conversely, decreasing di will not increase tij(di, dj), for any
outgoing arcs (i, j) of i. Then, we determine dFW

i as the minimum feasible value of di that
still allows i to start at ESi: this can be done by looking only at the set Γ−(i) of incoming
arcs of i. The earliest finish time of i is EFi = ESi + dFW

i , and the minimum project
makespan C∗

max = ESn+1 = maxi{EFi}.
Analogously, another optimal duration, denoted with dBW

i , of i is the maximum value
in the range [dmin

i , dmax
i ], that allows i to start at LSi, assuming LSn+1 = ESn+1 = C∗

max.
We compute dBW

i by the following backward (BW) recursion. Since decreasing di will not
increase length tij(di, dj) of arc (i, j), we can, initially, assume di = dmin

i and calculate
LSi, i.e., LSi = min(i,j)∈Γ+(i){LSj − tij}, where Γ+(i) is the set of outgoing arcs (i, j)

of i and tij = tij(d
min
i , dBW

j ). Then, we determine dBW
i as the maximum feasible value of

di that still allows i to start at LSi: this can be done by looking only at the set Γ+(i) of
outgoing arcs of i. The latest finish time of i is LFi = LSi + dBW

i . Let us consider the
project network with n = 4 activities, and variable activity durations, shown in Figure 1.

Table 1 lists the activity forward and backward optimal durations (dFW
i , dBW

i ) and the
earliest/latest start/finish times (ESi, LSi, EFi, LFi), calculated by applying the forward
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1 2 3 4
FF SS SS

Fig. 1. Example of a project network with GPRs and variable activity durations

and backward recursions. The minimum project makespan C∗
max is equal to 6, and dFW

i =
dBW
i , for all activities i but 2; in particular, dFW

2 < dBW
2 .

activity i 1 2 3 4
dFW
i , dBW

i 2, 2 2, 4 6, 6 4, 4
ESi, LSi 0, 2 0, 0 0, 0 0, 2
EFi, LFi 2, 4 2, 4 6, 6 4, 6

Table 1. FW and BW durations, and earliest/latest start/finish times of the example in Fig. 1

Looking at activity 2, we note that LS2 − ES2 = 0 and LF2 − EF2 = 2. Therefore,
differently from the case with known and fixed activity durations where the values of these
two differences are always equal and we simply refer to them as activity float, when activity
durations are variable these two floats could be different. Let us call start float of activity i
the difference LSi−ESi, and finish float of i the difference LFi−EFi. Since, according to
the traditional concept, an activity is critical if it has a non-positive float, activity 3 would
be classified as critical. However, we would have difficulty to characterize the criticality of
activity 2, since one of its floats is positive. The above example shows the need to redefine
and generalize the concept of critical activity and its relation with activity floats.

1 2 3 4 50
0 0 40

6

0

2 2
0

6 4

0

1 2 3 4 50
-2 0 40

0

2 4
0

6 4

0

6

Fig. 2. The SS-standardized network of the FW-network and BW-network associated with Fig. 1

Figure 2 represents the SS-standardized networks of the FW-network N(dFW ) and BW-
network N(dBW ) of the above example, respectively, with activity duration resulting from
forward and backward recursions. Here, only the arcs belonging to a longest path from
node 0 to node n+ 1 traversing an activity node are shown: among them, dashed arcs do
not belong to a critical path (i.e., a longest path from 0 to n+ 1). Note that FW-network
and BW-network can be different, at least for the arc lengths. Let us consider activities
2 and 3 that both result to belong to a critical path in both networks. However, while
activity 3 has both the start and finish floats equal to zero, as one could expect, this is not
the case for activity 2 which has only the start-float equal to zero. In addition, activity 1 is
on a critical path of the FW-network, but not in a critical path of the BW-network, despite
both its start and finish floats are greater than zero. Finally, we note that activity 4 has
both positive floats, but on the contrary of activity 1, it does not belong to any critical
path in both networks. Therefore, it is difficult to relate the criticality of an activity with
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its belonging to a critical path on the FW-network and/or on the BW-network. Moreover,
the analysis of the example does not show all the possible issues.

Let ℓFW
0→i and ℓBW

0→i be the lengths of the longest path from 0 to i, and let ℓFW
i→n+1 and

ℓBW
i→n+1 be the lengths of the longest path from i to n+1, of the SS-standardized networks

of the FW-network and BW-network, respectively.
Let δFW

i = C∗
max− (ℓFW

0→i + ℓFW
i→n+1) ≥ 0 be the FW-gap of activity i, i.e., the difference

between C∗
max and the length of the longest path from 0 to n+ 1 traversing node i in the

FW-network, and let δBW
i = C∗

max−(ℓBW
0→i+ℓ

BW
i→n+1) ≥ 0 be the BW-gap of activity i (w.r.t.

the BW-network). Therefore, from the definitions of FW-gap and BW-gap of activity i, it
follows that δFW

i ≤ LSi−ESi, because ℓFW
i→n+1 ≥ ℓBW

i→n+1, and, analogously, δBW
i ≤ LSi−

ESi, because ℓBW
0→i ≥ ℓFW

0→i. Hence, we have max{δFW
i , δBW

i } ≤ LSi − ESi. Analogously,
using the FF-standardized network representation, it can be shown that δFW

i ≤ LFi−EFi

and δBW
i ≤ LFi − EFi. Therefore, we have

max{δFW
i , δBW

i } ≤ min{LSi − ESi, LFi − EFi}
and, then, it is possible that an activity could have both positive start and finish floats,
despite belonging to a critical path in both the FW- and BW- networks.

3 Ongoing and future work

From the above analysis, we observe that the start and finish floats of an activity can
be different. Accordingly, it can happen that just one of them is equal to zero. Therefore,
we can identify as critical an activity for which min{LSi − ESi, LFi − EFi} = 0.

The importance of this result is that it calls for a more general concept of criticality
opening new perspectives on the project scheduling. In fact a float of critical activity
different from zero together with a variable duration allows a degree of flexibility in the
resource assignment usable to reduce the makespan of the project.

We will try to answer to the other research questions posed in the introduction, and,
in particular, we will show that there exists a vector of activity durations such that an
activity is critical if and only if it belongs to a critical path of the project network with
that activity durations. In addition, we aim to characterize the type of activity criticalities,
and to extend this analysis to the more general class of feeding precedence relationships.
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1 Introduction

A new type of manufacturing systems, called recon�gurable manufacturing systems
(RMS), is proposed to allow combining the �exibility of �exible manufacturing systems
(FMS) and high capacity of dedicated manufacturing lines (DML). Although the design of
RMS has received a lot of attention during the last two decades, there are few publications
dealing with operations scheduling in this type of manufacturing systems. This paper deals
with operations scheduling in recon�gurable �ow shops and discusses three versions of
the problem. It shows that the �rst version of this scheduling problem can be solved by
separately solving two sequencing problems. The other two versions can be formulated as
a single machine sequencing problem. The paper also provides a heuristic to solve large
instances. A numerical experiment shows that this heuristic produces solutions remarkably
close to the optimum for the tested instances involving up to 5 subfamilies of 20 jobs and
5 workstations each.

RMS are designed to admit several con�gurations that allow the production of a family
of parts that can be divided into subfamilies. Each subfamily requires one of the possible
con�gurations and, often, moving to manufacturing a new subfamily requires to recon�gure
the system. Recon�guring the system requires a major setup while manufacturing parts
within a same subfamily requires no or minor setups. Generally, the recon�guration setup
time is sequence-dependent while it is often assumed that minor setups required to man-
ufacture parts within a subfamily are sequence-independent and, consequently, their time
can be added to parts processing time. Thus, the problem reduces to sequencing subfam-
ilies as well as to sequence parts within each subfamily with the objective of minimizing
the overall make span.

Plastic extrusion lines are an example of recon�gurable manufacturing systems. The
three main components of a plastic extrusion line are: an extruder, a cooling bath, a haul-
o� machine. However, processing some jobs may require a co-extruder, a coiler or a cutting
machine, a drill, or a printer to print some information on the extruded products. So, it is
frequent to recon�gure the line by adding or removing such equipment. The subfamilies of
products are characterized by their raw material (there are about 20 types of raw materials)
their color (there are about 60 di�erent colors), �nal shape (coil or straight pieces) and the
die needed to pro�le the subfamily products. So, changeover time between two subfamilies
may require adding or removing a co-extruder, replacing the coiler by a cutting machine,
adding or removing a printer, removing or adding a drill, as well as changing the used raw
material. This may require up to 4 hours. On the other hand, if a job is to be coiled while
the next job of the same subfamily is to be cut into pieces, we only need to replace the
coiler by a cutting machine, and this takes just 15 minutes.

The remaining of this paper is organized as follows. Section 2 reviews some related
literature and section 3 de�ne and formulate the problem. Section 4 proposes a heuristic
solution method to schedule operations in a recon�gurable �ow shop while section 5 reports
on a numerical experiment undertaken to evaluate the proposed heuristic solution method.
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2 Literature review

Studying RMS was active during the last two decades since the introduction of this
concept by Koren et al. in 1999. Pansare et al. (2021) reviewed 454 articles dealing with
RMS published up to the year 2020. However, most of these publications address design
aspects of RMS. Very few articles deal with the problem of scheduling operations within
this type of manufacturing systems.

Azab and Naderi (2015) considered a �rst version of the recon�gurable �ow shop
manufacturing system (RFSMS) where all machines should be stopped to do the recon�g-
uration major setup. They proposed a mathematical model for scheduling its operations.
However, their model can only allow solving small instances. They solved instances with
up to 5 subfamilies and 4 jobs within each subfamily. Naderi and Azab (2021) considered
a second version of the RFSMS where the major setup prior to the processing of the
next subfamily is not always mandatory. If the system is not recon�gured, a variable and
sequence-independent extra time (called skipping time) should be added to each operation
of the jobs of this subfamily. Delorme et al. (2023) studied a third version of the problem
where some (but not all) machines do not require setup when the system is recon�gured in
between subfamilies. Those machines can continue processing jobs until the other machines
are recon�gured. The following deals with the �rst version of the problem.

3 Problem statement and formulation

The problem considered hereafter is that of scheduling the operations of a recon�gurable
�ow shop designed to produce S subfamilies of jobs and each subfamily s is composed of
ns jobs. Each subfamily requires a subset ws of the available machines or workstations.
All the jobs of a same subfamily follow the same processing sequence through its required
workstations. To change the con�guration, the line should be stopped, some workstations
or machines should be moved out, others should be added. The recon�guration setup is
sequence dependent while jobs within a same subfamily requires no or minor sequence-
independent setup time. The objective is to minimize the overall make span. To solve the
problem, we can decompose it into two independent problems: sequencing subfamilies and
sequencing jobs within each subfamily.

3.1 Sequencing subfamilies

Sequencing subfamilies can be formulated as a sequence-dependent single machine
scheduling problem, or equivalently as a traveling salesman problem. Let rgh be the recon-
�guration setup time if we process subfamily h immediately after subfamily g and xgh be a
binary variable that takes the value 1 if subfamily h is processed immediately after subfam-
ily g. Also, let r0h be the recon�guration setup time if subfamily h is in the �rst position
of the processing sequence. Then the subfamilies sequencing problem can be formulated as
follows:

Find: xgh ∈ {0, 1}; g= 0,..,S; h=1,..,S and g ̸= h which (1)

Minimizes:
S∑

g=0

S∑

h=1

rghxgh (2)

Subject to:
S∑

g=0

xgh = 1; h=1,. . .,S; g ̸=h (3)

S∑

h=1

xgh = 1; g=0,. . .,S; g ̸=h (4)

ug - uh + (S+1)xgh≤ S g=0,. . .,S; h=1,. . .,S; g ̸=h (5)
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The variables ug and uh are arbitrary numbers and the third set of constraints is the
subtour elimination constraint.

3.2 Jobs sequencing within a subfamily

Sequencing jobs within a subfamily s can be formulated as a permutation �ow shop
problem. Let pij be the processing time of job i on workstation j, yip be a binary variable
that takes the value 1 if job i is in position p in the processing sequence, Fjp be the �nish
time of the job on position p on workstation j. Then the problem can be formulated as
follows:

Find: yip ∈ {0, 1} and Fjp ≥ 0; i = 1, ..,ns; p = 1, ..,ns; j = 1, ...,ws which (6)

Minimize: Fwsns (7)

Subject to:

ns∑

i=1

yip = 1; p=1,. . .,ns (8)

ns∑

p=1

yip = 1; i=1,. . .,ns (9)

Fjp ≥ Fj,p−1 +

ns∑

i=1

yippij ; j=1,. . .,ws; p=2,. . .,ns (10)

Fjp ≥ Fj−1,p +

ns∑

i=1

yippij ; j=2,. . .,ws; p=1,. . .,ns (11)

3.3 Formulation of the other two versions of the problem

In the second version of the problem, where recon�guring the �ow shop prior to pro-
cessing some subfamilies is not always mandatory, we can deal with the problem as a �ow
shop problem with sequence-dependent setup times (see Meng et al. 2022). In this case, the
setup time before a job is nil if the preceding job belongs to the same subfamily and equals
to its skipping time, if not. However, we need to study the e�ciency of this formulation
compared to the one proposed in Azab and Naderi (2015).

The third version of the problem, where not all machines require recon�guration when
we move from a given subfamily to another one, can be formulated like the second version.
The setup time for a job on a given machine is nil if the previous job belongs to the same
subfamily and equals the required recon�guring setup time of this machine, if not. Again,
we need to study the e�ciency of this way of modeling the problem compared to the model
proposed in Delorme et al. (2023).

4 A proposed heuristic

To solve the subfamilies sequencing problem presented in section 3.1, a hybrid heuris-
tic is suggested. First an initial sequence is obtained by applying the nearest neighbor
heuristic S times starting by a di�erent subfamily in each repetition, and the best solution
is retained. Then, this sequence is improved by repeatedly removing one subfamily from
the sequence and reinsert it in the best possible position.

Note that for small values of S, it is faster to enumerate and evaluate all the possible
sequences and retain the best one. In our computational experiment, the average time
to enumerate all sequences of 9 subfamilies was 0.293 seconds while instances with 10
subfamilies required 2.911 seconds in average.

To solve the problem of sequencing jobs within each subfamily, the well-known NEH
sequential insertion heuristic is used (see Nawaz et al. 1983). This insertion heuristic is
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repeated 100 times and in each repetition the job to insert in the partial sequence is
selected randomly.

5 Evaluation experiment

To evaluate the performance of the proposed heuristic, 30 medium-size test instances
were randomly generated, solved to optimality using the models presented in section 3,
and solved by the proposed heuristic. The number of subfamilies is 3, 4, and 5. For all test
instances, the number of jobs within each subfamily is 20, and the number of machines is 5.
The following table summarizes the obtained results and shows that the proposed heuristic
produces solutions remarkably close to the optimal solutions.

Number of
subfamilies

Number
of

instances

Optimal solution Heuristic solution

Average make
span

Average com-
putational
time (sec)

Average
make span

Number of
times the
optimal
solution
was found

Average
percentage
deviation
from the
optimum

3 10 344.9 7.100 345.3 6 0.119 %

4 10 452.6 9.467 453.2 4 0.133 %

5 10 570.4 11.835 571.1 3 0.124 %

Average 0.125 %
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1 Introduction

Payments delays create a time lag between the expenses incurred by the contractor
and the progress payments received from the client, and they are a crucial category of risk
for projects. The challenges associated with obtaining continuous project finances often
place undue financial strain on contractors who may seek loans from financial institutions
to maintain their daily operations. These loans must be returned with interest, increasing
financing costs and considerably lowering the Net Present Value. In this paper, we delve into
cash flow and project scheduling strategies to mitigate late payment impacts and enhance
project resilience, presenting a distributionally robust risk-averse model that minimizes
the financing cost by accurately estimating the amount and timing of the expenses and
revenues throughout the project life cycle and foreseeing possible cost overruns and cash
flow fluctuations. The model includes the financing costs to determine the best project
schedule and financing alternative, covering the cash deficit with the minimum financing
cost in a two-stage stochastic program. The start time for each activity is set in the first
stage when the delay of client payments is still unknown. In the second stage, loans can be
borrowed based on the delays and the balance between negative and positive cash flows.

2 Mathematical formulation

The project, given in an activity-on-node (AoN) representation, is shown as a directed
graph G(V,E), where V = {0, 1, . . . , n, n + 1} (node 0 and n + 1 are dummy nodes for
project beginning and project completion) is a set of nodes of the activities and E is a set
of arcs showing the relations between the activities of finish-start zero-lag precedence.

The time T = {0, . . . , T} is describred by a discrete set of periods and d shows the
project deadline. Each activity has a known duration pi. For each activity i ∈ V , let
T i ⊆ T = {ei, . . . , li} show the time points at which activity i can start, i.e., periods
between the earliest ei and latest li start times for an activity i. Each activity, i, requires
or brings cash: outflow couti < 0 at the start time and inflow cini ≥ 0 at completion. At
project start, some amount of cash (C0) is invested by the contractor. The cash flows are
discounted with a rate of β is the per period. In most of the cases, the time at which
payments are received is not known with certainty, and subject to a random delay for the
activity i represented by ξωi , ∀ω ∈ Ω, where Ω refers to the scenario set (with a slight
abuse of notation, we will denote with ξω the vector [ξω0 , ... ξ

ω
n+1]). Payments occur after

the activity completion, possibly with a delay, but always within the planning horizon T .
Due to the payment delays, the contractor must finance the cash deficit by setting up
a feasible financing plan; commonly borrowing short or long-term loans. A line of credit
allows the contractors to borrow any time t. One possible way of repaying the debt is to
pay off the compounded interest (with the rate r > β) and the borrowed amount at the
end of the project. We integrate this borrowing possibility into our model.
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Payment delays can be described using a discrete set of scenarios that can be formu-
lated with expert opinions. However, the probabilities of occurrence for a specific scenarios
are difficult to estimate. We assume the scenarios concerning the timing of payments are
derived from historical data or subjective judgments, while the associated probabilities
are considered ambiguous. A simple, clear, and appropriate ambiguity set structure is the
box ambiguity set: ambiguity is injected considering a perturbation around the nominal
probability distribution. This is equivalent to determining the bounds for the box uncer-
tainty using the parameter Ψ to quantify the discrepancy that can be interpreted as the
decision-makers confidence regarding the nominal probability distribution.

The box ambiguity set can be defined as Ξbox = {p = p0 + π|eTπ = 0, ∥π∥∞ ≤ Ψ}
where p0 ∈ R|Ω| is the nominal distribution of the discrete probability; e ∈ R|Ω| is the
vector of ones; π ∈ R|Ω| a perturbation vector; ∥π∥∞ = maxω∈Ω |πω|; Ψ ∈ [0, 1] is the
upper bound of the fluctuation (Ψ will be used to denote eΨ) and eTπ = 0 ensures that
the sum of the probabilities represented by the vector p is equal to 1.

We define binary decision variables xit,∀i ∈ V, t ∈ T i, that take value of one if the
activity i starts in period t and zero otherwise. These are first-stage variables. In the
second stage, the binary variable qωit takes value of one if the time at which the payment of
the activity i is made at period t in scenario ω. The continuous variable lωt ,∀t ∈ T shows
the amount of the loan borrowed to avoid cash shortage in scenario ω. The model can be
formulated as follows.

NPV = max
∑

i∈V

∑

t∈T i

couti

(1 + β)t
xit +WCV aR[Q(x, ξ(ω))] (1)

∑

t∈T i

xit = 1 ∀i ∈ V (2)

∑

t∈T j

txjt ≥
∑

t∈T i

txit + pi ∀(i, j) ∈ E (3)

∑

t∈Tn+1

tx(n+1)t + pn+1 ≤ d (4)

xit ∈ {0, 1} ∀i ∈ V, t ∈ T i (5)

where

Q(x, ξ(ω)) = max
∑

i∈V

∑

t∈T

cini
(1 + β)t

qωit +
∑

t∈T

lωt
(1 + β)t

−
∑

t∈T

lωt (1 + r)T−t

(1 + β)T
(6)

∑

t∈T |t≥li

tqωit =
∑

t∈T i

txit + pi + ξωi ∀i ∈ V (7)

∑

t∈T |t≥li

qωit = 1 ∀i ∈ V (8)

C0 +
∑

i∈V

∑

t′≤t

couti xit′ +
∑

i∈V

∑

t′≤t

cini q
ω
it′ +

∑

t′≤t

lωt ≥ 0 ∀t ∈ T (9)

qωit ∈ {0, 1} ∀i ∈ V, t ∈ T , lωt ≥ 0 ∀t ∈ T (10)

First-stage constraints are shown in (2)-(5). The constraints (2) guarantee that an ac-
tivity starts between its earliest and latest start time. Constraints (3) are added to respect
the precedence relations. Constraints (4) guarantee that the project is completed before
the deadline. Constraints (5) imposes the binary restrictions on the first-stage variables.
In the second stage, constraints (7) formulate the time of cash inflows by considering the
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possible delay at each scenario. Constraints (8) and the binary restrictions in constraints
(10) guarantee that the cash payment for a completed activity is received as lump-sum.
Constraints (9) ensure that a capital deficit needs to be covered with the funds lωt bor-
rowed at time t in scenario ω. Constraints (10) impose the binary and non-negativity
restrictions on the second-stage variables. The second stage recourse function under sce-
nario ω is denoted as Q(x, ξ(ω)). The first term of the objective function (6) represents
the total payments received, the second term represents the amount of money borrowed,
and the third term displays the financing cost. The money borrowed lωt is considered a
cash inflow at time t, but at the end of the time horizon is an outflow since the capital
borrowed and the interests should be paid back. The objective function (1) maximizes the
net present value under risk. In particular, we consider the average value of the 1− α left
tail of the distribution, controlling the expected value in a given percentage of worst-case
realizations. Following the results presented in (Rockafellar, R. T. and Uryasev, S. 2002),
WCV aR[Q(x, ξ(ω))] = maxη∈R+ η − Eξ[(η−Q(x,ξ(ω)))+]

1−α = maxη∈R+ η − 1
1−α

∑
ω∈Ω p

ωγω.
Now, let us focus on the term

∑
ω∈Ω p

ωγω. Based on the definition of the ambiguity set, we
can write maxπ γ

Tp, p = p0 + π, eTπ = 0, ∥π∥∞ ≤ Ψ. Using the strong duality in linear
programming, we obtain γTp0 +minΨTβ +ΨT δ, eµ − β + δ = γ, β ≥ 0, δ ≥ 0, µ free.
We combine the latter model with model (1)-(10), and formulate the deterministic model
under the box ambiguity set :

max
∑

i∈V

∑

t∈T i

couti

(1 + β)t
xit + η − γTp0 +ΨTβ +ΨT δ

1− α

(2)− (5), (6)− (10)
γω ≥ η −Q(x, ξ(ω)) ∀ω
γω ≥ 0 ∀ω
eµ− β + δ = γ

β ≥ 0, δ ≥ 0, γ ≥ 0, µ free

Here η is a free decision variable, representing the VaR, and decision variables γω
are used to express the deviations of Q(x, ξ(ω)) below the VaR. By varying the value
of α ∈ [0, 1), different risk preferences can be obtained. At the two extremes, α = 0
corresponds to the risk-neutral formulation; in contrast, when α −→ 1 the decision-maker is
highly risk-averse and seeks the NPV maximization under the worst case.The proposed risk-
averse two-stage distributional robust model can encompass various models by changing
the value of the parameters α and Ψ . In particular, for α = 0 and Ψ = 0 we obtain a
standard two-stage stochastic programming model. For α = 0 and Ψ ̸= 0, we consider
distributional ambiguity within a risk-neutral approach. For α > 0 and Ψ = 0, we have a
two-stage CVaR-based risk-averse stochastic programming problem. This flexibility comes
at a cost since the resulting model is generally complicated to solve for ambiguity and the
risk-aversion.

Solving a distributionally robust problem is a challenging task, especially when distri-
butional robustness is embedded into the realm of two-stage stochastic programs. For this
class of problems, an efficient solution method is yet to be proposed. Exploiting the prob-
lem structure, a hierarchical heuristic algorithm is designed and tested. It decomposes the
problem into an upper-level master problem and a sub-problem. In the upper-level prob-
lem, all the variables that belong to the second stage are projected out, and an additional
artificial variable, denoting an approximation on the second-stage objective function, is
added. In each iteration the master problem is amended with two different cuts coming
for the information on the solution corresponding to previous iterations. The first type
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is known as the “no-good" cut and excludes the current solution from the search space
(Balas 1979). The second type of cut requires the solution of the second stage.

3 Computational experiments

To assess the performance of the heuristic approach, we selected 10 instances from the
DC2 data set of (Vanhoucke, M. 2010) and considered different combinations of parame-
ters. In particular, we use a deadline that corresponds to an increase (Incr) of 5, 10, 15, 20
percent of the minimum project duration, 9 combinations of the distribution of the cash
flows (Leyman, P. and Vanhoucke, M. 2017), three values (0.25, 0.50, 0.75) for the capital
constrainedness (CC), three scenario cardinalities |Ω| = {20, 40, 60}. The heuristic algo-
rithm was coded in AIMMS and Gurobi 9.1 was used as a solver. The heuristic is very fast.
The CPU time slightly increases for the more involved instances (see, for instance, dc1,
dc3, dc10). However, as the number of scenarios increases, our algorithm outperforms the
solver, finding better solutions in a few seconds.
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1 Project overview

This extended abstract centers on the master's thesis of Buld (2023). The thesis deals
with scheduling problems arising in a production environment for the �nal assembly of
aero engines. The environment consists of a low-volume production process with signi�-
cant processing times of several hours for each task. Involved products consist of multiple
parts with a complex structure.
Mathematical challenges arise, especially in the coupling of several production lines in time,
decisions about which machine to select in a �exible machine environment, recirculation
constraints of jobs returning to a machine, and shift border constraints due to the organi-
zation of the workforce. A complete model must also consider additional resources such as
operators and toolings. The thesis includes the following primary research directions:

1. Modeling Buld (2023) studies the scheduling problem with all constraints from a ma-
chine and a resource-constrained project scheduling perspective. The full model can be
captured using the three-�eld notation according to Graham et. al. (1979) as extended
by Pinedo (2016) together with resource constraints res · t1 from Blazewicz et. al.
(1983) and reassignment and border constraints de�ned in Buld (2023) and Section 5
respectively. The parameter t describes time-dependent resource sizes. It reads

FJc | intree, rj , reassign, res · t1, brdrs | γ (1)

with objective γ ∈
{
Cmax,

∑
j wjCj ,

∑
j wjTj

}
or alternatively

PS | sp-graph, reassign, res · t1, brdrs | γ (2)

using an activity-on-node network and the three-�eld notation for project scheduling
(Brucker et. al. 1999) and the notion of sp-graphs (Brucker 2007).

2. Theoretical The computational complexity of selected sub-problems concerning recir-
culation and border constraints is analyzed.

3. Solving Mixed integer linear programs (e. g. time-indexed, event-based, �ow-based)
from literature are extended and tailored to the speci�c scheduling problems. They are
implemented for solving alongside heuristic schedule generation schemes such as list
scheduling.

4. Practical The developed algorithms are incorporated into a prototypical, Python-
based software tool and applied to practical data to shorten the time required to create
adequate schedules for the machines deployed compared to manual planning.

In this extended abstract, we would like to focus on our results and insights on a speci�c
aspect, namely machine scheduling with shift border constraints.
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2 Modeling scheduling problems with border constraints

In fundamental scheduling problems, one usually regards time to be continuous. For the
considered application, we relax this assumption. Let us introduce the border constraints.
It connects scheduling with bin packing problems.

Given a planning horizon [0, T ], let B = {b0, b1, b2, . . . , bq} ⊆ [0, T ] with

0 = b0 < b1 < . . . < bq = T (3)

be a �nite set of (shift) borders. For a scheduling problem α | β, brdrs | γ, constraint brdrs
expresses that a set of borders B is given and that no job j ∈ J crosses a border, i. e.

{j ∈ J | Sj < b < Cj} = ∅ for all b ∈ B. (4)

Intervals between two borders are denoted as bins L, and their lengths are abbreviated
by ∆l for all l ∈ L.

For the general analysis, the bins may have di�erent lengths. Figure 1 illustrates the
notation. The depicted schedule is infeasible concerning border constraints as jobs 2 and 3
cross borders.

t

1 2 3

b0 = 0 b1 = 5 b2 = 11 b3 = 16

∆1 ∆2 ∆3

✓

Fig. 1. Single machine instance for the introduction of notation.

3 Setting and consequences in the real-world application

In the considered application, each task needs to be conducted by exactly one operator.
And every operator can complete one task at a time. The operators work in a shift-based
work model. A shift de�nes a time slot. The �xed duration of every shift is called shift
time. Imagine a task to be an alternating sequence of manual steps and machine processes
on a product. Since it must be assigned to one operator, such a task must be completed
within one shift. It means the tasks cannot cross a shift border, i. e. start before and �nish
afterward. If a task can not be accomplished in one shift, it will be postponed until the next
shift begins. This causes unwanted but forced idle time. Figure 2 depicts this postponement.

Depending on the precedence-structure, border constraints may prolong the overall
time from the initially scheduled start until the actual completion of a task by a signi�cant
amount. Section 5 quanti�es this amount for basic settings.

The company introduced a takt scheme to pace the production line for the main prod-
ucts. Due to low volume production, the takt time amounts to several hours, even larger
than a shift time. The challenge in this application constitutes designing a schedule that
coheres with the desired takt scheme and operator availability based on shifts. The critical
point is the long processing times of tasks. Even more complexity arises since the tasks for
the main products share the machine park with other value streams.
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t

1 2 3

First Shift Second Shift

t

1 2 3

First Shift Second Shift

✓

Fig. 2. Situation at shift borders for tasks in the considered application.

4 A possible solution approach for dealing with shift border constraints

Buld (2023) shows that even the single machine scheduling problems 1 | brdrs | Cmax

and 1 | brdrs |∑j Cj with border constraints are NP-hard in the strong sense.
Since including the border constraints turns a vast class of originally e�ciently solvable

scheduling problemsNP -hard, one can ask if one can solve the original problem and modify
the obtained schedule slightly to get a "near-optimal" one for the problem with border
constraints. One may compare it to changing preemptive schedules into non-preemptive
schedules, as often done in approximation algorithms. The idea is to push one job after
another to the right to meet the border constraints, as it is motivated in the application.
This idea is similar to the Next-Fit heuristics for bin packing (Johnson 1973).

Buld (2023) formalizes this procedure for certainly structured scheduling problems
within the pushing algorithm. The structure one needs is the encoding of a schedule in an
acyclic graph of technical and organizational sequences Gorg = (V,E ∪Eorg). The nodes V
correspond to the tasks to be scheduled, and the set of edges comprises given technical
sequences and precedences E. Chosen organizational sequences for every machine Eorg

extend the set of edges. One then sorts nodes topologically, iterates through the nodes in
this order, and computes starting times concerning the border constraints. This is possible
in O (|V |+ |E|+ |Eorg|) time (Buld 2023).

5 Theoretical results on the solution approach

Assume that every job �ts into every bin, i. e. pmax ≤ ∆min. This condition ensures that
each considered instance of a scheduling problem with border constraints has a feasible
solution and a convenient analysis, similar to the one for bin packing (Johnson 1973).
Buld (2023) shows that the pushing algorithm increases the length of each path in G by at
most factor two. Therefore, the makespan Cmax and the sum of completion times

∑
j Cj

after pushing tasks is at most doubled. Even more, this allows to bound the gap between
the optimal objective values for a scheduling problem without and with border constraints.
Following (Buld 2023), the result reads:

Theorem 1. For a scheduling problem with environment α ∈ {1, Pm, Fm, Jm, FFc, FJc}
and pmax ≤ ∆min, it holds

OPT (α | rj , prec, brdrs | Cmax) ≤ 2 ·OPT (α | rj , prec | Cmax), (5)

OPT (α | rj , prec, brdrs |
∑

j

Cj) ≤ 2 ·OPT (α | rj , prec |
∑

j

Cj). (6)
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Note that this result is independent of bins' relative sizes. This bound is tight for single
machine or �ow shop environments (Johnson 1973, Buld 2023). If we consider tasks that
are small compared to the bins' sizes, we can give better bounds:

Theorem 2. For a scheduling problem with environment α ∈ {1, Pm, Fm, Jm, FFc, FJc}
and pmax ≤ q ·∆min with q ∈ (0, 1], it holds

OPT (α | rj , prec, brdrs | Cmax) ≤ 1

1− q ·OPT (α | rj , prec | Cmax), (7)

OPT (α | rj , prec, brdrs |
∑

j

Cj) ≤ 1

1− q ·OPT (α | rj , prec |
∑

j

Cj). (8)

Theorem 2 improves the bound from Theorem 1 for q ∈ (0, 1/2]. Thus, we can conclude
that border constraints may be negligible if tasks' processing times are relatively small
compared to bins' sizes. However, it is still important to consider border constraints within
the scheduling in applications with comparatively large processing times like the one at
hand.

6 Conclusions

In this extended abstract based on Buld (2023), we present results on machine schedul-
ing with border constraints. The initial use case lies in the practical project, which is
to design schedules that respect takt scheme requirements and simultaneously meet shift
border constraints de�ned in Section 2.

In Section 5, we show how much impact border constraints can have in the worst case for
certainly structured scheduling problems. A numerical study on real-world data concludes
this use case in Buld (2023).
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1 Introduction

The proactive and reactive resource-constrained project scheduling problem (PR-RCPSP),
introduced by Davari and Demeulemeester (2019), addresses uncertainties in real-world
projects in a novel manner. A PR-RCPSP solution is a proactive and reactive policy (PR-
policy) that includes the baseline schedule and foresees potential transitions (reactions)
to other schedules. In their subsequent work, reactions are categorized into selection-based
and buffer-based. While both classes are crucial, buffer-based reactions hold greater signif-
icance. Acknowledging their theoretical and managerial importance, we focus on a purely
buffer-based approach to solve the PR-RCPSP. Our method includes a strategy for gener-
ating a sufficient selection and innovative heuristics for proactive and reactive procedures.
The synergy of these methods allows us to construct schedule pools and derive optimal
PR-policies. Experimental results reveal the superiority of our solutions over existing al-
ternatives in terms of both computational time and combined cost.

2 The PR-RCPSP

The PR-RCPSP involves activities N = {0, 1, . . . , n+ 1}, with 0 and n+ 1 as dummy
start and end activities. Non-dummy activities i ∈ N \ {0, n + 1} have stochastic integer
durations p̃i within [pmin

i , pmax
i ]. Dummy activities have p̃0 = p̃n+1 = 0. Realizations B =

{pl | l = 1, . . . , |B|} have probabilities π(p̃ = pl). Instances include renewable resources R
with availabilities Rk, and activity i requires rik units of resource k. Zero-lag finish-start
precedence relations E indicate j starts after i finishes, with transitive closure T (E) and
transitive reduction t(E).

Solutions to the PR-RCPSP are PR-policies, denoted as Π. At each decision moment,
we update our information about project execution. All the available information collec-
tively defines the state of execution, and each decision in PR-policy Π corresponds to a
certain state of execution. A schedule vector is represented as s. The cost of a PR-policy
has baseline and reaction components, including fixed and deviation costs. The formulation
accounts for baseline and reaction costs over realizations:

min
Π∈Π

B∑

l=1

π(p̃ = pl)




wbs

[0]Π
n+1 +

νΠ,l∑

k=1


wr +

∑

i∈U(s[k−1]Π,l ,tk)

wi

∣∣∣s[k]Π,l

i − s[k−1]Π,l

i

∣∣∣







. (1)

Here, Π is the set of all PR-policies, and wb, wr, and wi denote baseline, fixed reaction,
and deviation costs.
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3 Methodologies

Our methodology for solving the PR-RCPSP consists of three phases. In the first phase,
we generate a sufficient selection that will be used to create schedules in the schedule pool.
In the second phase, we first construct the initial schedule pool using various heuristics,
and then, we augment the initial schedule pool by reacting to conflicts. In the last phase,
we obtain the optimal PR-policy by solving the PR-RCPSP using Model 3. The flow chart
of our approach is illustrated in Figure 1.

Fig. 1. A purely buffer-based approach to the PR-RCPSP

3.1 Generation of the sufficient selection

The generation of the sufficient selection involves two stages. In the first stage, an
initial selection, denoted as X init, is created by generating the schedule sinit using an
initial realization pinit ∈ B through the branch-and-bound method by Demeulemeester
and Herroelen (1992). Any implicitly added resource arcs during this process are identified
by comparing the starting time of each activity i ∈ N \ {0, n + 1} with the maximum
finishing time of its predecessors. The selected activities are added to X init. The initial
selection X init is then extended to a sufficient selection X. We use the algorithm proposed
by Stork and Uetz (2005) to enumerate all minimal forbidden sets and eliminates them by
introducing resource arcs.

3.2 Construction of the schedule pool

In this study, all schedules in both the initial and final schedule pools are generated by
applying the earliest start policy (ES-policy) to the sufficient selection X and a realization
p. This approach ensures that every reaction in the optimal PR-policy adheres to the buffer-
based principle. We explore five distinct initial schedule pools in our experiments, the most
important of which is a set constructed using the reversed starting time criticality (reversed
STC) heuristic. An extension of the STC heuristic proposed by Van de Vonder et. al. (2008),
the reversed STC heuristic inherits key concepts from STC, where the criticality of activity
starting times is assessed based on probability assumptions. The reversed STC heuristic
introduces the concept of reversed STC values, considering the potential impact of each
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activity on its direct and transitive successors. The algorithm iteratively selects activities
with the highest reversed STC values, introducing buffers after them and generating new
schedules. The process continues until the project makespan meets a deadline, maintaining
the same sufficient selection.

Once we have obtained the initial schedule pool, we proceed to augment it by generating
high-quality reactions to conflicts. This phase aims to strike a balance between diversity
and similarity in the final schedule pool. Buffer-based reactions are ensured through the in-
troduction of the buffer-based schedule generation scheme (buffer-based SGS). The scheme
reacts to conflicts, resulting in diverse schedules while maintaining buffer-based principles.
To achieve this goal, the algorithm randomly selects pairs of schedules and realizations
from the initial schedule and realization pools. Buffer-based SGS reacts to conflicts in the
selected schedule-realization pair, generating new schedules by adjusting ongoing activity
durations. These new schedules, contributing to diversity, are added to the schedule pool if
not already present. The process continues until the desired size of the final schedule pool
is achieved.

3.3 Solution to the PR-RCPSP

Upon completion of constructing the schedule pool, we advance to tackle the PR-
RCPSP utilizing Model 3, a Markov decision process (MDP) introduced by Davari and
Demeulemeester (2019).

4 Findings

Experiments are performed on J30X_1 instances from PSPLIB (Kolisch and Sprecher
1997). The obtained results are juxtaposed with those from Davari and Demeulemeester
(2019), identified as DD.

4.1 Main results

The key findings are summarized in Table 1. Across all ten scenarios, RSTC consistently
establishes the lowest average computational time, with the average instance-wise margin
frequently exceeding 50% relative to DD. Concerning the combined cost, RSTC exhibits
notable effectiveness particularly in scenarios where the ratio of the fixed reaction cost wr to
the cost per unit time for the baseline schedule wb is high. In cases where wr is small, RSTC
retains its competitive edge against DD, requiring only half of the computational time while
delivering comparable combined costs on an instance-wise basis. The buffer-based nature of
the reversed STC heuristic and the buffer-based SGS justifies these outcomes, emphasizing
the advantages of preserving the resource flow of the project under uncertainty.

4.2 Supplementary experiments

We conduct supplementary experiments to further explore our purely buffer-based ap-
proach and the PR-RCPSP in general. Among the 48 generated sufficient selections, 40
are dominant, theoretically avoiding superfluous resource arcs that might reduce the solu-
tion space. We propose two variants of the reversed STC heuristic, finding that increased
complexity can lead to overfitting. Meticulous experiments are conducted to address the
balance between diversity and similarity within the schedule pool. We reveal that comput-
ing the optimal size of the initial schedule pool for one specific scenario is justifiable but
practically impossible and oftentimes counterproductive. Compared to DD, RSTC tends
to achieve a lower combined cost in scenarios with high resource factors and low resource
strengths.
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Table 1. Comparison of results between DD and RSTC

S init wb wr Time %∆Time Cost %∆Cost #Best #States #Cuts #Conts

DD 25 0 245.95 1,649.21 41 3,987,309 16,740 11,656
50 450.37 1,815.39 14 4,561,013 17,107 11,656

100 372.60 1,931.26 5 4,181,568 16,865 11,656
150 365.29 2,023.28 4 3,924,144 16,653 11,656
200 380.05 2,104.30 1 3,692,974 16,462 11,656

RSTC 25 0 96.31 −54.25 1,683.65 2.07 0 2,475,690 9,075 10,792
50 220.18 −29.54 1,812.98 −0.08 10 3,270,352 9,139 10,792

100 252.16 −8.72 1,883.78 −2.36 22 3,031,343 9,051 10,792
150 213.56 −26.21 1,931.76 −4.36 27 2,754,131 8,955 10,792
200 215.60 −29.69 1,968.27 −6.22 29 2,544,078 8,865 10,792

DD 50 0 266.30 3,172.66 36 3,971,584 16,193 11,533
50 387.07 3,384.20 35 4,332,693 16,343 11,533

100 222.97 3,539.00 22 4,010,686 16,116 11,533
150 393.96 3,658.44 7 3,794,780 15,928 11,533
200 377.09 3,758.56 6 3,585,239 15,774 11,533

RSTC 50 0 98.06 −50.77 3,221.23 1.58 0 2,402,059 8,844 10,792
50 216.13 −24.37 3,427.35 1.31 0 3,270,352 9,139 10,792

100 222.97 −21.65 3,557.28 0.54 5 3,031,343 9,051 10,792
150 233.41 −20.46 3,646.22 −0.30 10 2,754,131 8,955 10,792
200 205.53 −28.67 3,716.87 −1.07 13 2,544,078 8,865 10,792

5 Conclusions

In this study, we present a purely buffer-based approach to tackle the PR-RCPSP. The
introduced reversed STC heuristic yields a schedule pool that consistently requires the
least average computational time, achieves a competitive combined cost when wr is small,
and dominates in scenarios where wr is large. The key takeaway for project managers
is the importance of prioritizing stability and avoiding unnecessary alterations to task
assignments, particularly when uncertainty-related costs are significant.
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1 Introduction

Intra-hospital patient transfer (IHPT) refers to the transfer of a patient from one de-
partment to another in the same hospital and has become particularly relevant after the
Covid-19 pandemic. Our research concerns the homogeneous scheduling of a crew composed
of identical employees who must perform a given IHPT task (i.e., carrying a patient) over
a given time horizon. The problem is to determine the shifts of the employees such that the
demand in each time period is covered, while the constraints imposed by public healthcare,
labour law, and the company that provides the IHPT service are respected. An important
objective for the company (which is not often studied in the literature) is to increase sched-
ule homogeneity. Two shifts are said to be part of a homogeneous schedule if they start and
end at the same time period but take place on different days. In this work, we introduce
three tailored IHPT solution methods, two using integer linear programming (ILP) and
one using a decomposition algorithm, and evaluate them on real instances provided by
hospitals in the region of Tuscany. We demonstrate that our algorithms can decrease the
total schedule costs, computed as the number of worked hours, while also increasing the
schedule homogeneity compared to the solution currently adopted by the company.

2 Literature Review

The existing literature on personnel scheduling problems (PSP) is very large and covers
different areas such as logistics, healthcare, retail and manufacturing. A comprehensive
review of PSP was provided by Ernst et al. 2004, according to which it is possible to classify
our problem as a “flexible-demand PSP”, because the number of employees required may
vary from one time period to another. In our work, the time horizon corresponds to a week,
a time period corresponds to an hour and the demand for each hour is obtained by using
forecasting techniques based on historical data.

Following the literature, there are three main strategies when it comes to building a
PSP schedule. The first, and most intuitive strategy, consists of finding a suitable task-
employee matching. For example, Krishnamoorthy et al. 2001 proposed ILP models for a
PSP in which tasks with fixed starting and ending times were assigned to a heterogeneous
workforce. Whereas those ILP models could be solved with a state-of-the-art ILP solver,
the authors recognized that not all relevant PSP constraints could easily be modeled using
ILP. The second strategy consists of enumerating every feasible sequence of tasks that
can be performed by each employee forming a so called stint (see Ernst et al. 2004) and
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solving a set covering type model where each employee is assigned to exactly one stint.
For example, Mehrotra et al. 2000 used such a strategy to solve multiple staff scheduling
problems with breaks. Even though such a strategy can be effective in solving some PSPs,
the number of feasible stints grows exponentially with the number of periods considered in
the time horizon, which quickly becomes an issue for state-of-the-art ILP solvers. The last
strategy is a mix between the other two and consists of dividing the time horizon into a set
of rotations, enumerating every feasible sequence of tasks that can be performed by each
employee for each rotation, and assigning each employee to exactly one shift per rotation.
For example, Legrain et al. 2020 used such a strategy to solve a nurse scheduling problem.
The nurse scheduling problem, which has been widely studied in the literature, has many
similarities with our problem. We refer the reader to the work ofBurke et al. 2004 for
a survey on the topic. Even though most practical nurse scheduling problems are solved
through non-exact approaches (see, e.g., Millar et al. 1998) because of the complexity
induced by real-world case studies, promising algorithms based on decomposition methods
were also proposed in the recent literature. For example, Brucker et al. 2010 suggested a
decomposition algorithm where the stints are constructed in a first phase and then assigned
to the nurses in a second phase. In this work, we mix the strategies of Legrain et al. 2020
and Brucker et al. 2010 to develop a shift-based decomposition approach for our IHPT
problem.

3 Problem Definition and mathematical model

We consider a set T = D × H of 168 time periods that can be decomposed into 7
days (or rotations) of 24 hours each. For each time period t ∈ T , we are given a staffing
requirement (or demand) dt that must be covered by a set of shifts. Every shift s ∈ S has a
starting time ts (ts ∈ T ), a duration of rs ∈ {4, 5, 6, 7, 8} consecutive time periods, and an
ending time ts+rs (ts+rs ∈ T ). Every day, each employee e ∈ E can be assigned to at most
one shift s ∈ S, provided that (i) there is a minimum period of rmin = 16 resting hours
between the moment an employee ends a shift s and the moment they start their next shift
s′, (ii) an employee performs at most smax = 5 shifts in total, and (iii) an employee does
not work more than hmax = 40 hours in total. To model schedule homogeneity, we also
define the concept of a shift family. We state that two non-identical shifts s and s′ belong
to the same shift family f ∈ F if both shifts have the same duration (i.e., rs = rs′) and the
same starting hour, but not the same starting day (i.e., ts ≡ ts′ mod 24). For modeling
purposes, we define the following sets: (i) all the shifts with family f are gathered in S(f),
(ii) all the shifts that include time period t as a working time (i.e., all the shifts s such that
ts ≤ t < ts+ rs) are gathered in S(t), and (iii) all the shifts that include time period t as a
working or resting time (i.e., all the shifts s such that ts ≤ t < ts+ rs+ r

min) are gathered
in I(t). By introducing binary decision variables xes taking the value 1 if employee e is
assigned to shift s and binary decision variables yf taking the value 1 if the shift family f
is used in the solution, the IHPT problem that we face can be modeled as follows:

min k
∑

e∈E

∑

s∈S

rsxes +
∑

f∈F

yf (1)

s.t.
∑

e∈E

∑

s∈S(t)

xes ≥ dt ∀t ∈ T, (2)

∑

s∈S

rsxes ≤ hmax ∀e ∈ E, (3)

∑

s∈S

xes ≤ smax ∀e ∈ E, (4)
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∑

s∈I(t)

xes ≤ 1 ∀e ∈ E,∀t ∈ T, (5)

∑

e∈E

∑

s∈S(f)

xes ≤Myf ∀f ∈ F, (6)

xes ∈ {0, 1} ∀e ∈ E,∀s ∈ S, (7)
yf ∈ {0, 1} ∀f ∈ F. (8)

The objective function (1) minimizes the total number of worked hours and the number of
shift families used. A suitable coefficient k to establish a hierarchy a lexicographic ordering
of objectives) between the two components is k = 24 × 5 = 120 (as there are 24 possible
starting times and 5 possible durations for a shift). Constraints (2) ensure that the demand
is covered in each time period. Constraints (3) and (4) impose that the workload of each
employee satisfies the requirements. Constraints (5) ensure that the minimum resting pe-
riod between two consecutive shifts is respected. Finally, big-M constraints (6) link the two
sets of variables xed and yf , where a suitable big-M coefficient is 7× |E| (assuming that 7
is the number of days). Model (1)-(8), referred to as M1 hereafter, does not perform very
well empirically even though it possesses a polynomial number of variables (O(|E||S|)) and
constraints (O(|E||T |)).
Inspired by the recent work of Delorme et al. 2022 on hierarchical optimization, our second
approach, referred to as M2 hereafter, consists of solving two successive ILP models. First,
the number of worked hours, z1 =

∑
e∈E

∑
s∈S rsxes, is minimized using constraints (2)-

(5) and (7). Second, the number of shift families used, z2 =
∑

f∈F yf , is minimized using
constraints (2)-(8) together with supplementary constraint

∑
e∈E

∑
s∈S(t) xes ≤ z1. Even

though experiments showed that M2 outperformed M1 in terms of number of instances
solved to optimality, large hospitals (with a large number of employees |E|) remained a
challenge. Consequently, we also developed a decomposition method suitable for large-size
instances.

4 Decomposition method

Following the idea developed by Brucker et al. 2010, we decomposed the IHPT problem
in two phases: in the first phase we determine the shifts that minimize the number of
worked hours and the number of shift families used, and in the second phase we determine
whether there exists a feasible shift allocation of the employees. By introducing integer
decision variables xs indicating the number of times shift s is used in the solution and
re-using binary decision variables yf , the first phase of the IHPT problem can be modeled
as follows:

min k
∑

s∈S

rsxs +
∑

f∈F

yf (9)

s.t.
∑

s∈S(t)

xs ≥ dt ∀t ∈ T, (10)

∑

s∈S

rsxs ≤ hmax|E|, (11)

∑

s∈S

xs ≤ smax|E|, (12)

∑

s∈I(t)

xs ≤ |E| ∀t ∈ T, (13)
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∑

s∈S(f)

xs ≤Myf ∀f ∈ F, (14)

xs ∈ N0 ∀s ∈ S, (15)
yf ∈ {0, 1} ∀f ∈ F, (16)

which is a direct adaptation of model (1)-(8) in which xs =
∑

e∈E xes. Note that, like M2,
model (9)-(16) can also be solved hierarchically. If we denote by x̄s(s ∈ S) a solution of
model (9)-(16), the second phase of the IHPT problem can be modeled with constraints
(2)-(8) plus

∑
e∈E xes = x̄s,∀s ∈ S. This second phase consists of assigning the shifts found

in the first phase such that the workload of each employee and the resting period between
two consecutive shifts are respected. If the second phase is infeasible, one may decide to
go back to the first phase after adding a so-called “no-good cut”.

5 Results and Conclusions

The three models were coded in Python and executed on an MSI GF63 Thin with Intel
core i7-11800H 2.5 GHz with 16 GB of RAM on Windows 11. Gurobi 10.0.3 was used as a
solver. A time limit of 300 seconds was imposed for each execution of the model. We ran
the three models on a set of 16 real instances and reported the computation time in the
following table:

H 01 H 02 H 03 H 04 H 05 H 06 H 07 H 08 H 09 H 10 H 11 H 12 H 13 H 14 H 15 H 16
M1 8.02 121.56 17.04 T.L. 13.33 T.L. 4.72 12.29 T.L. 10.99 9.90 T.L. 5.24 T.L. T.L. T.L.
M2 28.21 34.75 62.80 T.L. 39.42 T.L. 18.70 24.17 235.51 42.54 29.54 76.64 15.87 63.08 T.L. 64.95
M3 4.80 4.29 6.78 9.05 6.85 137.35 4.49 5.38 24.70 4.19 5.13 8.14 4.83 9.37 13.14 8.00

We observe that M3 could solve all the instances to optimality in 12.65 seconds on average,
which is significantly better than M2 (13 instances solved to optimality in 86.36 seconds
on average) and M1 (9 instances solved to optimality in 140.56 seconds on average). Also,
the solution provided by M3 uses 4.25 less hours on average when compared to the solution
currently adopted by the company.

Future research consists of studying larger instances in which the second phase of M3
is infeasible and evaluating the performance of the model when no-good cuts are required.
We are also interested in the stochastic aspect of our IHPT problem and in developing
scenarios for the demand instead of considering a deterministic measure. Another direction
could be to focus on the workload balance; in this scenario, our formulation could be easily
adapted, for example by using variables yef instead of yf .
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1 Introduction

Uncertainty permeates every aspect of project work. As one cannot control what is not
defined, and the definition of uncertainty is uncertain, this paper presents a generic project
uncertainty model using a systems thinking approach. Elemental strategies for manag-
ing project uncertainty are identified based on the model, and techniques are suggested
for strategy implementation. The fundamental differences between risk and uncertainty
management and the need for a scientifically transcendent approach are highlighted.

2 Literature

The PMBOK (PMI, 2017) does not explicitly define uncertainty. Still, it describes risk
as an uncertain event or condition that, if it occurs, has a positive or negative effect on
project objectives. Ward and Chapman (2002) argue that focusing on uncertainty pro-
vides an essential difference in perspective through an enhanced focus on both opportunity
and risk. Another view on the difference between risk and uncertainty is the ability to
quantify the probability of an event occurring, implying that risk and uncertainty are mu-
tually exclusive (Perminova et al., 2008; Migilinskas and Ustinovicius, 2008). Others, like
Meyer, Loch, and Pich (2002), perceive uncertainty as variability, classified into stages
starting with variation, foreseeable uncertainty, unforeseeable uncertainty, and chaos. Dif-
ferent approaches for dealing with uncertainty are suggested. Pitch, Loch, and De Meyer
(2002) identify three fundamental project management strategies: instructionism, learning,
and selectionism. Johansen et al. (2014) present a process-oriented nine-step framework
for identifying, analyzing, and managing project uncertainty involving objectives, threats,
opportunities, decisions, and stakeholders, resulting in a combined risk and opportunity
matrix. Hubbard and Evans (2010) dispute the effectiveness of such matrices. Raadgever
et al. (2011) confirm the validity of the classic strategies for managing uncertainty: Ignor-
ing, knowledge generation, interaction, and coping. Ackermann (2023) promotes systems
thinking to induce broad, systematic, and regular thinking and evaluate risk events using
causal loop diagrams.

3 Methodology

In this research, a project is perceived as a conceptual system, where a system is
defined as a whole that contains two or more parts, where each part potentially affects
the properties or the behavior of the whole. None of the parts has an independent effect;
how any part influences the whole depends on how others act. The elements of a system
are always connected; between any parts, there is always a direct and an indirect path.
Compared to functional and process analysis, the systems thinking approach makes sense
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of the real-world complexities by looking at the whole picture rather than splitting them
into parts.

4 Project uncertainty

Fig. 1. The project system with the uncertainty matrix projected.

Uncertainty can be defined as a lack of information awareness or information availabil-
ity. The uncertainty matrix (figure 1) visualizes this principle forming the quadrants:

– Known-known refers to information that is available and its relevance is understood
– Known-unknown is desired, but unavailable information
– Unknown-known, information is present, but one is unaware of its existence
– Unknown-unknown, relates to unavailable information and unawareness of its perti-

nence.

A project can be modeled as a conceptual system, with principal elements and subcompo-
nents being the:

– Assignment (stakeholders, benefits, deliverables, activities, resources)
– Context (prerequisites, inter-dependencies, constraints, threats, opportunities)
– Decisions (qualifiers, rationale, alternatives, effects, confirmation)
– Method (approach, techniques, tools, coordination mechanisms, communication chan-

nels)
– Scenario (plan, risks, problems, crises, posture).

Uncertainty exists regarding the elements of the system (static perspective), the interac-
tions between elements, outside forces, and the effects of interventions on natural variation
(dynamic perspective). The primary strategies to systematically minimize uncertainty are
raising information awareness, increasing information availability, improving information
effectiveness, and maximizing information efficiency. The scenario elements consist of the
components plan (intended order of events), risk (potential for problems and crisis), prob-
lems (unwanted or harmful situations), and crises (unsolvable problems) and posture.
During the secure stage, risks are conceptual. A risk event (RE) occurs when an actual risk
is introduced. Launching a ship opens the risk of sinking. Being a unique endeavor, the
risk stage coincides with the normal operating mode of the project. A problem event (PE)
occurs when the actual state deviates from the intended target or status quo. When all op-
tions to remedy the problem have failed, and the only alternative is to reduce the damage,
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Fig. 2. The stages of the risk continuum.

a crisis event (CE) is a fact. Projects must acquire adequate conceptualization, detection,
cognition, and reaction capabilities to detect the tell tales of risk, problem symptoms, and
crisis indicators. In the best case, a risk is avoided in the secure stage by design (1); in
the worst case, a risk transgresses into a problem and crisis undetected (3). One possible
scenario is risk detection (a), cognition (b), mitigation (c), problem event due to residual
risk, detection (d), cognition (e), and problem-solving (2). For each state, measures can
be envisioned, prepared, and deployed. Pre-emptive measures may include risk acceptance,
avoidance, mitigation, or transfer. Problem countermeasures involve solving, resolving, dis-
solving, or absolution. Contingency measures for dealing with crises are to endure, reduce,
rebuild, or provide continuity. The posture is a coherent set of measures per stage and the
decision to commit resources as a precaution. Eight posture combinations (2*2*2) exist,
ranging from entirely passive (N,N,N) to fully proactive (Y,Y,Y).

5 Discussion

Models are a means to an end; the presented model can be adjusted for specific project
domains, features, or situational factors. In theory, project uncertainty is a property of the
observer; acquiring more information does not fundamentally change the system. Becom-
ing aware of a risk or problem neither prevents nor solves it. This is true, provided the
observation itself does not change the system. A fundamental issue with the conventional
project risk management paradigm is the presumption that problems can be prevented
during the risk stage. First, given the uncertain nature of projects, a scenario exists where
undetected problems are present at project inception, implying that risk responses are no
longer relevant as the horse has escaped the stable. Launching a ship with a hole effectively
bypasses the risk stage. Second, any overlooked prerequisites, constraints, or dependencies
will cause the plan to fail; no probability is involved. The project is past the risk stage;
the question becomes when and how the problem will be discovered, if at all. Becoming
aware is not a problem event occurring; the problem is there all the time. Discriminating
between separate risk, problem, and crisis stages with individual measures prevents false
mitigation: actions designed to solve the problem are perceived as risk mitigation. Carry-
ing a spare tire does not reduce the probability of a flat or enable one to keep driving.
False mitigation precludes a conscious decision about the desirability and economics to
address the risk, solve the problem, or prepare for a crisis. A third issue is a lack of gran-
ularity; any source of trouble is attributed to risk. Unidentified stakeholders, deliverables
or requirements, wrong decisions, and unsound methods are uniformly dubbed risks, like
a modern-day evil spirit creating havoc. Business analysis, methodology, problem-solving,
and decision-making are all separate fields supported by multiple sciences. From a systems
thinking perspective, making a wrong decision can cause a problem or increase risk in a
scenario, they are separate though related elements. Similar logic goes for threats and op-
portunities; causal loop diagrams help visualize these relationships. Uncertainty reduction
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implies maximizing the known-known area by raising information awareness, for exam-
ple, using the Project Metadata Technique and Power Kanban; and increasing availability
through investigation, prototyping, calculation, simulation, and forecasting. The generic
project hypothesis can be supported using models such as Cynefin to assess the nature
of the domain (Kurz/Snowden, 2003), the Four Phase model regarding the strategic con-
tribution (Hardjono, 1995), or the level of uniqueness using the Diamond of Innovation
(Shenhar/Dvir, 2007).

6 Conclusions

Project uncertainty can be generically defined by projecting the uncertainty matrix on a
conceptual project system. Uncertainty management aims to maximize the known-known
area by improving information availability and awareness while maximizing information
effectiveness and efficiency. In addition, projects must acquire robust conceptualization,
detection, cognition, and reaction capabilities to handle scenario-related uncertainty. The
conventional risk responses alone (avoid, transfer, mitigate) are insufficient to secure project
success; a conscious decision regarding preemptive and contingency measures is necessary to
define a coherent posture given time and resource constraints. Uncertainty management is
a crossroads of scientific fields, requiring a trans-disciplinary approach. Although founded
in the project management realm, the presented uncertainty approach is universal and
applicable in other domains.
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1 Problem definition

In addition to road, rail, and air transport, rivers and waterways serve as natural infras-
tructures well-suited for freight transport. Despite being an age-old method, transporting
goods over inland waterways proves reliable, cost-effective, and environmentally friendly
within logistics and supply chains. According to the European Commission, the energy
consumption for water transport is approximately 17% of that for road transport and 50%
of rail transport. Eurostat reported in 2014 that waterways contribute to around 12.3% of
Germany’s total freight transport infrastructure, and this figure is approximately 6.6% for
the European Union (EU). Navigating through key waterways such as the Panama Canal,
the Kiel Canal, the Albert Canal, and others necessitates the use of locks due to variations
in water levels at specific points.

A lockage or lock movement denotes a singular operation of a chamber, encompassing
the entry of one or more ships into the chamber, the adjustment of water levels from
downstream to upstream or vice versa, and the subsequent exit of the ships from the
chamber. Note that ships approach from either the upstream or downstream side. The term
lockage time corresponds to the duration required to execute this operation. The chamber’s
capacity signifies the maximum number of ships that can be concurrently accommodated
during a single lockage. Locks are comprised of either a single chamber or multiple parallel
chambers. For example, the Wijnegem lock, situated in Belgium, linking the Albert canal
to the Antwerp port, comprises three non-identical parallel chambers.

Having many applications in real-world situations, the lock scheduling problem (LSP)
in several variations has attracted far many concerns during the last years. In this context,
several papers consider the LSP in a single-lock single chamber setting. Petersen and Taylor
(1988) publish one of the early LSP papers where they consider the Welland Canal in North
America. Nauss (2008) presents an integer programming model to determine the sequence of
a queue at a lock. Moreover, Smith, Nauss, Mattfeld, Li, Ehmke, and Reindl (2011) consider
a single chamber as a two-stage queue, combine optimization and simulation methods to
analyze it, and develop a mixed integer programming (MIP) along with a heuristic solution
approach. Hermans (2014) studies an LSP consisting of one chamber with unit capacity.
Passchyn, Coene, Briskorn, Hurink, Spieksma, and Berghe (2016) describe a polynomial
algorithm to minimize total waiting time for a bidirectional LSP including a single lock
chamber.

Formally, we consider a single lock consisting of M = {1, . . . ,m} non-identical parallel
chambers. The chambers operate independently of each other, and each is characterized
by two numbers: a one-dimensional length denoted by Lj that represents the length of
the chamber and a lockage time (or simply a duration), denoted by dj . Moreover, a set
N = {1, . . . , n} of non-identical ships arrive on either side of the lock. Each ship i ∈ N
is characterized by an arrival time ai, a length li, a waiting cost per unit time wi and a
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position pi, where pi = 0 for a downstream arrival, and pi = 1 for an upstream arrival.
Also without loss of generality and only for convenience, we assume a1 ≤ a2 ≤ ... ≤ an.
We aim to assign ships to chambers and schedule each lockage of chambers such that the
total waiting cost is minimized. The problem is denoted by LSTW. Apart from LSTW, we
study the special case where ships are identical, i.e., li = 1 and wi = 1. This special case
is denoted by LSTW − IS.

For the ease of reference and in the remainder of this paper, we use the following
notations. We divide set N into two disjoint subsets D and U where D = {i ∈ N |pi = 0}
and U = {i ∈ N |pi = 1}. Let Ut (respectively, Dt) be the set of ships that have already
arrived upstream (respectively, downstream) before or at time t. Thus, Ut and Dt are
computed as follows:

Ut = {i ∈ U |ai ≤ t} and Dt = {i ∈ D|ai ≤ t}.

Note that ships in both Ut and Dt are sorted according to non-decreasing order of their
arrival times. We define notations ωk(Ut) (respectively, ωk(Dt)) which is the kth ship in
Ut (respectively, Dt), and ΓU

t = |Ut| (respectively, ΓD
t = |Dt|) that is the number of ships

arrived upstream (respectively, downstream) at time t.

2 Complexity

Following a straightforward reduction from 3-partition, we conclude LSTW is strongly
NP-hard. Also, the complexity of LSTW − IS for an arbitrary number of chambers (m is
part of the input) is strongly NP-hard since its no-wait counterpart is already known to be
strongly NP-complete (Passchyn, Briskorn, and Spieksma, 2019). We provide a polynomial-
time algorithm to solve LSTW − IS when the number of chambers (m) is constant.

Theorem 1. Assuming m being constant, LSTW − IS is solvable in O(nm+3) time.

Note that when m = 1, the LSTW − IS is equivalent to the lockmaster’s problem
(Passchyn et al., 2016) with a bound on the number of ships in the lock. Interestingly, our
algorithm for such a special case runs in O(n4) which is computationally comparable with
the algorithm introduced in Passchyn et al. (2016).

3 A time-indexed formulation

In this section, we propose mixed-integer linear programming formulations for both
LSTW and LSTW − IS. We define variables xUjt(xDjt) which is one if chamber j loads ships
(if any) and leaves upstream (downstream) at time t and variables yijt which is one if
ship i is serviced by chamber j at time t and zero otherwise. The following time-indexed
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formulation solves LSTW.

TIF :min
∑

i∈N

∑

j∈M

T∑

t=0

yijtwi(t− ai)+

s.t.
min(T ;t+dj−1)∑

s=t

(xUjs + xDjs) ≤ 1 ∀j ∈M, t ∈ {0, ..., T} (1)

min(T ;t+2dj−1)∑

s=t

xUjs ≤ 1 ∀j ∈M, t ∈ {0, ..., T} (2)

min(T ;t+2dj−1)∑

s=t

xDjs ≤ 1 ∀j ∈M, t ∈ {0, ..., T} (3)

∑

j∈M

T∑

t=0

yijt = 1 ∀i ∈ N (4)

∑

i∈U
liyijt ≤ Ljx

U
jt ∀j ∈M, t ∈ {0, ..., T} (5)

∑

i∈D
liyijt ≤ Ljx

D
jt ∀j ∈M, t ∈ {0, ..., T} (6)

yijt ≤ xUjt ∀i ∈ U,∀j ∈M, t ∈ {0, ..., T} (7)

yijt ≤ xDjt ∀i ∈ D,∀j ∈M, t ∈ {0, ..., T} (8)

yijt = 0 ∀i ∈ N, ∀j ∈M, t < ai (9)

xUjt, x
D
jt ∈ {0, 1} ∀j ∈M, t ∈ {0, ..., T} (10)

yijt ∈ {0, 1} ∀i ∈ N, ∀j ∈M, t ∈ {0, ..., T} (11)

For the above formulation, constraints (1) ensures that each chamber, while starting a
movement, leaves either upstream or downstream and that once a movement of a chamber
is started at time t, another movement of the same chamber (regardless of its direction)
cannot be started before t + dj . Constraints (2) (constraints (3)) guarantee that when a
chamber movement starts from downstream (upstream) at time t, another movement of
the same chamber from downstream (upstream) is not allowed before t+ 2dj . Constraints
(4) enforces assignment of each ship to exactly one movement of a chamber. Constraints
(5)-(6) satisfy the capacity requirement for each movement. And finally, constraints (7)-
(8) enforce movements of chambers whenever there is at least one ship assigned to such
movements.

4 Valid inequalities

We borrow the following property from Passchyn et al. (2019).

Property 1. Each chamber movement either directly follows upon a previous movement or
starts upon some ai while containing ship i.
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Following the above property, any of the two TIF formulations introduced above, can be
improved by including the following set of constraints:

xUjt ≤ xDj,t−dj
∀j ∈M, t ∈ {dj , ..., T} with nUt = 0 (12)

xDjt ≤ xUj,t−dj
∀j ∈M, t ∈ {dj , ..., T} with nDt = 0 (13)

xUjt ≤ 0 ∀j ∈M, t ∈ {0, ..., dj − 1} with nUt = 0 (14)

xDjt ≤ 0 ∀j ∈M, t ∈ {0, ..., dj − 1} with nDt = 0 (15)

where nDt is the number of ships that arrive downstream at time t, nUt is the number
of ships that arrive upstream at time t. Based on the above-described property, when
nDt + nUt = 0, any allowed chamber’s movement at time t must coincide with the end of a
previous movement, which is guaranteed by constraints (12)-(15).

5 Initial results

Preliminary findings indicate that the TIF formulation, incorporating additional in-
equalities, exhibits effectiveness in solving instances of LSTW and LSTW − IS involving
up to 100 jobs. The absence of these additional inequalities significantly hampers the per-
formance of TIF. In the case of LSTW − IS and for smallm, an early implementation of the
proposed polynomial algorithm demonstrates a slightly superior performance compared to
TIF. For the case where m = 1, a dedicated iterative dynamic programming approach is
performant. Additionally, early results suggest that an associated set-covering formulation
may not yield computational advantages, while a Benders decomposition approach exhibits
some potential.
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1 Introduction

Hybrid flow shop (HFS) represents a specialized manufacturing environment, diverging
from traditional flow shops due to the presence of multiple parallel machines at one or
more stages. Over the past decades, various HFS problems have been extensively studied,
shedding light on their complexities and nuances across different industries. Applications of
HFS have been used in various manufacturing processes, including electronics (Jin, Ohno,
Ito and Elmaghraby 2002), paper (Sherali, Sarin and Kodialam 1990), textile (Grabowski
and Pempera 2000), and concrete (Guinet 1991). Differently from the above domains,
food production may involve unique restrictions regarding the order in which different
products are produced, e.g., due to allergens. Recently, Mendoza-Mendoza, Ospino-Castro
and Romero-Martínez (2021) modeled a food production problem as an HFS, but the
process that they studied did not contain such ordering restrictions.

In this paper, we model an HFS problem found at Tadmir Mixture Institute, which
is a large institute for the production of animal feed mixtures. The institute provides
clients with three different types of mixtures depending on their need for medication: dirty,
neutral, and clean. A dirty mixture includes drugs, such as antibiotics, whereas a clean
mixture does not contain any drugs. A neutral mixture does not contain drugs in its recipe
but may contain drug residues. Accordingly, a clean mixture cannot be produced after
a dirty one without an intervening neutral mixture; this precaution is taken to prevent
scenarios in which a clean mixture might contain drug residues, which could be harmful to
some animals. For each mixture type, there is a wide range of recipes, denoted by mixture
codes. In total, there are several hundreds of distinct mixture codes tailored for a variety
of animals.

The production process includes other aspects, which are detailed in Section 2. The
problem is formally modeled in Section 3. A discussion in Section 4 concludes the paper.

2 Description of the production process

The main production process includes two stages: mixing and steam pressing. In the
first stage, raw materials of various types – liquid, flour, or grains – enter a mixer. The
mixer blends the materials to achieve a uniform mixture. In the second stage, the mixture
is transferred to a steam press, which forms dumplings of varying shapes and sizes tailored
to the clients’ specifications.

The first stage has a single mixer machine. The mixer can contain a maximal amount
of three tonnes of raw material; following Wang, Zhao, Gao and Sutherland (2019), we
denote this by SZmax=3 t. A fixed processing time (p1=4min) is required to complete
the mixing, even when the mixer is not full. Therefore, the processing time of a job j,
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for which an amount SZ j of raw material is needed, is given by ⌈ SZ j

SZmax
⌉ · p1. The setup

times for operations of the first stage are negligible. The second stage consists of three
identical steam-press machines that work in parallel. There is a fixed setup time (20min)
for preparing any second-stage machine between jobs of different mixture codes.

An illustration of the production process is given in Figure 1. The institute receives job
orders from various clients. Each job order specifies the required mixture code, amount,
and due date. Recall that each mixture code is either dirty, neutral, or clean; a clean
mixture may be produced after a clean or neutral mixture, but not after a dirty one. The
objective is to complete the processing of all jobs with a minimal number of tardy jobs. If
it is possible to complete all the jobs within their deadlines, the objective is to complete
the overall production process as soon as possible, i.e., minimize the makespan.

Stage 1 Stage 2

Mixer capacity: 3 [t]
Stirring time: 4 [min]
Negligible setup time

Setup time: 20 [min]

M1

due 
date

amount
[t]

mixture 
code

100010S-104

110015S-108

120012S-507

123014S-510

14008S-405

160016L-205

17009L-303

M2

M3

Fig. 1. Illustration of the production process.

Another aspect of the production scheduling problem regards concurrency. As noted,
the mixer can handle up to three tonnes at a time. Therefore, large-capacity jobs (lots) are
divided into sublots of up to three tonnes each. When a sublot leaves the mixer, it can enter
one of the steam press machines (when a machine is available). Contemporaneously, the
next sublot of that job can start processing in the mixer. The division into sublots yields
an interesting property in which a job may be concurrently processed in the two stages.
Nevertheless, all sublots of a job must be sequentially processed on the same machine in
stage 2. Figure 2 presents a Gantt chart demonstrating the concurrency.

time

Machine 1 

Machine 2 

Machine 3 

Stage 2 (steam)

Stage 1 (mixer)

Job 1

Job 2

Fig. 2. An example of a Gantt chart showing the division of a job into sublots (different sublots
are shown by different colors).
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3 Formal modeling of the problem

We model the problem at focus using the α|β|γ notation (Graham, Lawler, Lenstra and
Kan 1979):

F (1, 3) | fmls, slgh, split,NI ,SZmax, p1j = ⌈
SZ j

SZmax
⌉ · p1 |Lex(

∑
Uj , Cmax) (1)

The first field, α, characterizes the machine environment. In this problem, the environ-
ment is a hybrid flow shop with two stages: a single machine at the first stage and three
parallel identical machines in the second stage. We follow the notation of Emmons and
Vairaktarakis (2013) for hybrid flow shops. The stages are denoted by l = {1, 2}.

The second field, β, delineates the characteristics of the jobs, i.e., the constraints stem-
ming from different mixture codes and the division into sublots. The mixture codes and
types dictate the setup times. Two consecutive jobs of different mixture codes require a
non-negligible, yet constant, setup time in the second stage. Additionally, a clean job can-
not succeed a dirty job; this constraint on mixture types can also be represented in the
form of setup times by applying infinity as the setup time between all mixture codes of
dirty type and all mixture codes of clean type. Consequently, every mixture code can be
referred to as a job family, with sequence-dependent setup times between families (con-
stant or infinity, depending on the mixture types). This is denoted in the literature as
fmls, sgh (Pinedo 2022). Since, in this problem, setup times differ in the two stages (neg-
ligible vs. 20min, respectively, for valid consecutive mixtures), we revise the notation to
slgh to account for the stage dependency.

The term lot streaming, which refers to splitting a lot into sublots to enable their
parallel production, was first coined by Reiter (1966). Most studies on lot streaming use
a designated notation system rather than the standard α|β|γ to express the variety of
problem features (Chang and Chiu 2005, Cheng, Mukherjee and Sarin 2013). Nonetheless,
split has been previously used for denoting lot streaming in the α|β|γ notation (Sethanan,
Wisittipanich, Wisittipanit, Nitisiri and Moonsri 2019). Some of the specific lot-streaming
characteristics are relevant to our problem: consistent sublots are such that their sizes
remain the same over all the machines, and no intermittent idling, denoted NI (Cheng et
al. 2013), means that all sublots of the same lot must be processed sequentially on the
same machine. Note that the consistency characteristic is redundant when no intermittent
idling is applied on a two-stage flow shop.

There is another lot-related characteristic to consider that is absent from the lot-
streaming literature: the maximal bound on the size of a sublot (3 t). This sublot-size
constraint is unique to our problem because the tendency in lot-streaming scenarios is to
use small-sized sublots to enhance the advantages of parallelism. However, the capacity
bound of the mixer requires consideration of the constraint. Although we are not aware
of existing literature that explicitly models a maximal bound on the size of a sublot, we
adopt for this purpose the notation SZmax of Wang et al. (2019) who use it as a parameter
in their model. Additionally, the processing time in the mixer of each sublot is constant
(p1=4min). Therefore, as explained in Section 2, the processing time in stage 1 of a job j
is given by p1j = ⌈ SZ j

SZmax
⌉ · p1.

The third field, γ, represents the objective function. The problem herein comprises
two objectives: the primary objective is to minimize the number of tardy jobs, denoted
ΣUj , whereas a secondary objective is to minimize the makespan, denoted Cmax. T’kindt
and Billaut (2006) studied various types of multicriteria objectives in scheduling. They
generalized the concept of primary/secondary objectives and termed such scenarios as
having a lexicographical order between the criteria, denoted Lex and followed by the ordered
list of criteria.
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4 Discussion

We have presented the problem of animal food production at Tadmir Mixture Institute
as an HFS, which is known to be NP-hard even for two stages (Emmons and Vairaktarakis
2013). Our problem differs from standard HFS due to additional aspects, particularly by
applying the combination of setup times and division into sublots. Existing studies on HFS,
with or without setup times, usually employ evolved meta-heuristics (Allahverdi, Ng, Cheng
and Kovalyov 2008). But in our case, the simple structure of constant family-derived setup
times and practically constant sublot size suggest the direction of developing dedicated
heuristics. As a preliminary idea, we advised the institute to unite job orders from clients
with the same mixture code and close deadlines. The job union leverages two important
characteristics of the problem – the constant processing time of the mixer and the relatively
high setup time of steam pressers. Implementing this simple idea proved highly effective
compared to the institute’s scheduling routine. The actual production process includes
additional details that we omitted for clarity. For example, mixtures containing only flour
ingredients do not require the steam pressing stage. However, such jobs can be represented
in our model as having zero setup and processing times in stage 2. The provided modeling
of this unique problem is a first step toward the development of a full optimization solution.

References

Allahverdi, A., Ng, C. T., Cheng, T. E. and Kovalyov, M. Y.: 2008, A survey of scheduling problems
with setup times or costs, European journal of operational research 187(3), 985–1032.

Chang, J. H. and Chiu, H. N.: 2005, A comprehensive review of lot streaming, International
Journal of Production Research 43(8), 1515–1536.

Cheng, M., Mukherjee, N. and Sarin, S.: 2013, A review of lot streaming, International Journal
of Production Research 51(23-24), 7023–7046.

Emmons, H. and Vairaktarakis, G.: 2013, Flow Shop Scheduling: Theoretical Results, Algorithms,
and Applications, Vol. 182 of International Series in Operations Research & Management
Science, Springer Science & Business Media.

Grabowski, J. and Pempera, J.: 2000, Sequencing of jobs in some production system, European
Journal of Operational Research 125(3), 535–550.

Graham, R. L., Lawler, E. L., Lenstra, J. K. and Kan, A. R.: 1979, Optimization and approximation
in deterministic sequencing and scheduling: a survey, Annals of Discrete Mathematics, Vol. 5,
Elsevier, pp. 287–326.

Guinet, A.: 1991, Textile production systems: a succession of non-identical parallel processor shops,
Journal of the Operational Research Society 42(8), 655–671.

Jin, Z., Ohno, K., Ito, T. and Elmaghraby, S. E.: 2002, Scheduling hybrid flowshops in printed
circuit board assembly lines, Production and Operations Management 11(2), 216–230.

Mendoza-Mendoza, A., Ospino-Castro, W. and Romero-Martínez, D.: 2021, Production schedul-
ing in a flexible hybrid flow shop in the food industry based on the theory of constraints,
International Journal of Engineering Research in Africa 52, 124–136.

Pinedo, M. L.: 2022, Scheduling: Theory, Algorithms, and Systems, sixth edn, Springer Nature.
Reiter, S.: 1966, A system for managing job-shop production, The Journal of Business 39(3), 371–

393.
Sethanan, K., Wisittipanich, W., Wisittipanit, N., Nitisiri, K. and Moonsri, K.: 2019, Integrating

scheduling with optimal sublot for parallel machine with job splitting and dependent setup
times, Computers & Industrial Engineering 137, 106095.

Sherali, H. D., Sarin, S. C. and Kodialam, M. S.: 1990, Models and algorithms for a two-stage
production process, Production Planning & Control 1(1), 27–39.

T’kindt, V. and Billaut, J.-C.: 2006, Multicriteria Scheduling: Theory, Models and Algorithms,
second edn, Springer Science & Business Media.

Wang, H.-y., Zhao, F., Gao, H.-m. and Sutherland, J. W.: 2019, A three-stage method with efficient
calculation for lot streaming flow-shop scheduling, Frontiers of Information Technology &
Electronic Engineering 20(7), 1002–1020.

Booklet of abstracts for the 19th International Workshop on Project Management and Scheduling, April 2�5, 2024

49



Makespan service level for the flexible job shop
scheduling problem under machine-related uncertainty

Mario Flores-Gómez1, Stéphane Dauzère-Pérès1,2

1 Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, Gardanne, France
{mario.flores, dauzere-peres}@emse.fr

2 Department of Accounting and Operations Management, BI Norwegian Business School, Oslo,
Norway

Keywords: Stochastic scheduling, Service level, Random processing times, Monte Carlo
sampling, Tabu search.

1 Introduction

The Flexible Job-shop Scheduling Problem (FJSP) is a generalization of the classical
Job-shop Scheduling Problem (JSP), that includes a set of operations partitioned into a set
of jobs. The operations in a job have to be processed in a specific order (routing) on a set
of available machines. A machine can only perform one operation at a time, and operations
cannot be interrupted once started. An operation can be executed by any machine in a given
subset specific to that operation (eligible machines). The processing times can be machine-
dependent. Finding a solution to this problem means determining both an assignment of
operations to machines, and the sequence the operations on the machines, while respecting
the routing of every job.

The Stochastic FJSP (SFJSP), where the processing times of operations in the machines
are stochastic, has been considerably less studied than its deterministic version. Daniels
and Carrillo (1997) define, for a single-machine scheduling problem, a β-robust schedule
to model the likeliness of the total flow time across all jobs to be no worse than a given
target level. This notion is extended by Beck and Wilson (2007) to deal with the stochastic
JSP. They propose a number of techniques combining Monte Carlo simulation with solu-
tion approaches dedicated to the deterministic JSP (e.g. constraint programming or tabu
search). In continuation of our work in (Flores-Gómez et. al. 2021) and (Flores-Gómez et.
al. 2023), we pursue the study on the relevance of the notion of makespan service level as
defined in (Dauzère-Pérès et. al. 2008) but, instead of considering job-related processing
time uncertainty, as in the aforementioned publications, we focus on the case where the
processing times of all operations that can be processed by one machine are stochastic, i.e.
the processing time uncertainty is machine related. The notion of makespan service level
and our solution approach are recalled in Section 2. Numerical results are presented and
discussed in Sections 3 and 4. Conclusions and perspectives are given in Section 5.

2 Problem statement and solution approach

As processing times are random variables, the makespan of a sequence is also a random
variable. Our goal is to maximize the probability that the makespan is lower than or equal
to a given threshold T . Let us recall the notion of makespan service level :

α(S, T ) = P(Cmax(S, ξ) ≤ T ),

where ξ is a multivariate random variable of dimension n.
To determine the service level of a sequence, a set of scenarios Ω is generated and an

algorithm based on Monte Carlo simulation is implemented, as described in (Flores-Gómez
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et. al. 2023). The service level is denoted α(S, T,Ω). The proposed solution method is
based on a competitive tabu search approach (Dauzère-Pérès and Paulli 1997), including
a Monte Carlo sampling procedure to represent and deal with uncertainties. The results
of computational experiments as well as the outline of the proposed method can be found
in (Flores-Gómez et. al. 2023). Note that minimizing the makespan does not mean maxi-
mizing the service level.

3 Relevance of makespan service level

In (Flores-Gómez et. al. 2023), the case where the variability of the processing time
of an operation is related to the job of the operation, is taken into account. However, for
several reasons, the uncertainty of the processing times can be related to the machines
the operations are assigned to. The level of machine flexibility (i.e. the number of eligible
machines to which an operation can be assigned) has more impact since the machines
that are more prone to variability should typically not be used for the operations with
the largest processing times. To illustrate this comment, we generated instances where the
processing times of all operations that can be processed by one machine are stochastic. The
set of scenarios Ω is randomly generated for every machine k ∈ M according to the beta
probability distribution (Marshall and Olkin 2007), by extending the FJSP benchmark
instances from Hurink et. al. (1994). In this abstract, |Ω| is set to 5,000. The processing
times in the benchmark instances are set as the mean parameter µ for every random
variable used to generate the scenarios in Ω. The standard deviation σ is expressed as a
fraction of µ. The support [c, d] = [µ − 0.2µ, µ + 0.8µ] for every random variable is also
defined using µ. Let Sinit be the sequence found by the tabu search in Dauzère-Pérès and
Paulli (1997) for mean values of the random processing times.

Table 1. Characteristics of instances mt06, mt10 and mt20 with three lines per instance
type (edata, rdata, vdata) for each level of machine flexibility.

Instance |M| |J | Operations Average
Cmax(Sinit)per job |Mi|

1.15 55
mt06 6 6 6 2 47

3 47
1.15 881

mt10 10 10 10 2 686
5 655

1.15 1,091
mt20 5 20 5 2 1,023

2.5 1,023

To solve the SFJSP, the tabu search in (Flores-Gómez et. al. 2023) is applied to the
instances described in Table 1 using 500 scenarios for each run. Let S∗ be the sequence found
by the tabu search. Different results might be obtained depending on the representativeness
of the set of selected scenarios. To assess the online evaluation of the makespan service level,
10 runs of the tabu search are conducted using 10 mutually-exclusive subsets Ωb

500 ⊂ Ω,
b ∈ {1, . . . , 10}. Each subset Ωb

500 represents the bth batch of 500 scenarios in Ω. Since
|Ω| = 5, 000, there are 10 such subsets in Ω.

Booklet of abstracts for the 19th International Workshop on Project Management and Scheduling, April 2�5, 2024

51



4 On the improvement gap

Let us now focus on the improvement gap. A first general remark is that the larger
1

|M|
∑

k∈M[α(S∗, T,Ω)−α(Sinit, T,Ω)], the more effective the proposed solution approach.
A large improvement of the service level indicates that, using the mean values of the process-
ing times to find a sequence minimizing the makespan is not as effective for the SFJSP as
maximizing the makespan service level. The results in Column “ 100%

|M|
∑

k∈M[α(S∗, T,Ω)−
α(Sinit, T,Ω)]” of Table 2 show the improvements for every batch of scenarios and every
instance. Column “minM, b” (resp. “maxM, b”) presents the smallest (resp. largest) improve-
ment ∀b ∈ {1, . . . , 10} and the associated argument (batch b) per machine and instance.
If the minimum improvement gap is equal to 0, batch b in Column “minM, b” corresponds
to the first batch detected. The improvement gap is very consistent on average regardless
of the subset Ωb

500 as shown in Figure 1 and regardless of the level of machine flexibility,
where α(S∗

Ωb
500
, T,Ω) − α(Sinit, T,Ω) is plotted for instances mt10-edata and mt10-vdata

∀b,∀k ∈M. The improvement is between 0% and 15% for mt10− edata, and between 0%
and 22% for mt10− vdata. These improvements are larger than the ones presented in our
previous publications (Flores-Gómez et. al. 2021, Flores-Gómez et. al. 2023). Please note
that a small increase of the mean improvement does not necessarily mean that the solution
approach is ineffective, but rather that α(Sinit, T,Ω) is on average already large.

Table 2. Improvement gap between initial and optimized sequences based on subsets
Ωb

500 ⊂ Ω, b ∈ {1, . . . , 10} for instances from (Hurink et. al. 1994). One row per level of
machine flexibility (edata, rdata and vdata). α(S) = α(S, T,Ω).

100%
|M|

∑
M[α(S∗

Ωn
500

, T,Ω)− α(Sinit, T,Ω)] α(S∗
Ωb

500
)− α(Sinit) (%)

Inst.
b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7 b = 8 b = 9 b = 10 minM, b maxM, b

13.1 12.46 13.6 12.9 13.5 13.16 13.36 14.1 13.74 14.92 3.4 , 3 54.0 , 10
mt06 6.92 8.66 7.76 8.84 6.7 8.56 7.14 7.04 7.48 6.66 0.0 , 1 51.4 , 9

10.62 10.52 10.56 10.54 10.82 10.34 10.08 10.32 10.58 10.56 0.0 , 1 53.6 , 4
3.58 3.92 3.98 4.06 4.34 4.34 4.14 3.2 4.0 4.56 0.0 , 1 15.6 , 1

mt10 7.82 9.08 8.54 8.26 9.72 8.04 8.68 7.1 8.14 9.12 1.8 , 8 17.4 , 5
2.28 1.98 2.7 4.42 3.42 4.04 2.0 2.88 2.88 3.88 0.0 , 1 21.6 , 6
0.44 0.48 0.74 0.7 0.56 0.56 0.64 0.68 0.88 0.56 0.0 , 1 3.8 , 9

mt20 0.36 0.46 0.02 0.06 0.3 0.08 0.24 0.36 0.3 0.0 0.0 , 1 4.0 , 2
3.16 3.32 3.0 3.04 2.96 2.92 3.26 3.04 3.24 3.24 0.0 , 1 19.8 , 2

5 Conclusions

In this abstract, in continuation of our work in (Flores-Gómez et. al. 2021) and (Flores-
Gómez et. al. 2023), we extend the study on the relevance of the notion of makespan service
level when the processing time uncertainty is machine related. In our previous work, the
considered uncertainty was exclusively job related. The numerical results on a reduced set
of instances are presented, further motivating the relevance of the makespan service level.
Additional computational results obtained using other service levels on regular scheduling
criteria such as the sum of the weighted tardiness will be presented in the conference.
Scenarios obtained from historical data from an industrial partner will also be used to
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Fig. 1. Box-plot associated with the estimation error (in %) for subset Ωb
500 ⊂ Ω, ∀b ∈

{1, . . . , 10} for instances mt10-edata and mt10-vdata from (Hurink et. al. 1994). One point
per machine. α(S,Ω) = α(S, T,Ω), T = {923, 653}.

conduct new computational experiments, and to further motivate the relevance of service
level criteria in scheduling.
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1 Introduction

We have a project characterized by precedence constraints, denoted by G(N ,A) where
N is the set of jobs and A is the set of precedence arcs. A subset of these jobs, denoted
by NR, need a resource for processing. At any point in time, we can process an infinite
number of regular jobs but only one resource job. We consider a discrete time horizon T .
The processing time of job i is denoted by pi. Each job i imposes a cost depending on
its completion time t that we denote by cit. We want to minimize the sum of these costs
over all the jobs. Note that this generic cost function generalizes well-known scheduling
objectives such as makespan and weighted total completion time. Already with the last
objective function, the problem is strongly NP-hard and this can be shown by a reduction
from the 3-partition problem.

We apply a Benders decomposition to solve this problem. We show that under the
assumption that cit is non-decreasing in t for each fixed i, the corresponding sub-problem
can be solved by a single run of Dijkstra’s shortest path algorithm in a network with |N |·T
nodes (note that when the costs are given explicitly in the input, this is polynomial in the
input size). Previous studies in the literature have addressed similar problems without
considering a resource. Such problems required the solution of a more involved maximum
flow computation with arc-flow lower bounds as seen in Möhring (1984).

2 The dedicated algorithm

We can decompose the problem as follows: one can first define the order in which the
resource jobs are processed and then schedule all jobs considering the additional precedence
constraints imposed by the order of the resource jobs. This allows us to devise a Benders
decomposition approach to solve the problem. We introduce variables xij ∈ {0, 1} which
indicate the order between two resource jobs i and j and step variables yit ∈ {0, 1} which
determine if job i finishes at time t as explained by Artigues (2017).

The master problem is thus given as follows:

min ϕ ∀i ∈ N
s.t. xij + xji = 1 ∀i, j ∈ NR

x and ϕ fulfil optimality and feasibility cuts

xij ∈ {0, 1} ∀i, j ∈ NR

The cuts are generated by solving the dual of the following sub-problem for a given
solution x̂ to the master problem. The primal sub-problem is stated as follows:
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Fig. 1: A precedence graph with disjunctive arcs between two resource jobs, representing
the possible choices for the additional precedence constraints

ϕ = min
∑

i∈N
∑T

t=0 c
′
it yit

s.t. yiT = 1 ∀i ∈ N
yit+1 − yit ≥ 0 ∀i ∈ N , t ∈ [T − 1]

yit−pj
− yjt ≥ −αx̂

ij ∀i, j ∈ N , i ̸= j, t ∈ ]pj , . . . , T ]

yipi−1 = 0 ∀i ∈ N
yit ≥ 0 ∀i ∈ N , t ∈ [T ]

Where, for notational convenience, we define c′it = cit − cit+1 with ciT+1 = 0 and αx̂
ij as

αx̂
ij :=





0 if (i, j) ∈ A,
1− x̂i,j if i, j ∈ NR,

1 otherwise

To obtain a cut, one can solve the dual of the sub-problem, which is given as follows.

max
∑

i∈N γi −
∑

i,j∈N ,i̸=j

∑T
s=pj

αx̂
ij vijs

s.t. θi + uis−1 − uis
+

∑

j∈N\{i},s+pj≤T

vijs+pj
−

∑

j∈N ,j ̸=i

vjis ≤ c′it ∀i ∈ N , s = pi − 1

uis−1 − uis
+

∑

j∈N\{i},s+pj≤T

vijs+pj −
∑

j∈N ,j ̸=i

vjis ≤ c′it ∀i ∈ N , s ∈ [T − 1] \ {pi − 1}

γi + uis−1 − uis
+

∑

j∈N\{i},s+pj≤T

vijs+pj
−

∑

j∈N ,j ̸=i

vjis ≤ c′it ∀i ∈ N , s = T

uis, vijs ≥ 0 ∀i ∈ N , s ∈ [T ]

Note that the dual is equivalent to an uncapacitated min-cost flow problem in a graph
with nodes (i, s) for i ∈ N and s ∈ [T ]. For a non-decreasing cost function, we derive
c′it ≤ 0 for all i ∈ N and all t < T , which indicates a demand, and c′iT ≥ 0 for all i ∈ N ,
which indicates a supply. In this flow problem, demands may be oversaturated and supplies
may be underutilized.

Based on the precedence graph of Figure 1, we construct the flow graph of the dual of
the sub-problem in Figure 2. The flow graph has a source denoted by s, which via the arcs

Booklet of abstracts for the 19th International Workshop on Project Management and Scheduling, April 2�5, 2024

55



1

2

3

0 1 2 3

×s t

× × ×

× × ×

× × ×

θ1 γ1

θ2 γ2

θ3 γ3

u10

v121

Fig. 2: Related flow graph of the dual where node (i, t) has a supply/demand of c′it, the
crosses stand for sinks and the dots for sources

representing variables θ can provide infinite free supply to nodes (i, pi − 1). The variables
γ are represented by the arcs going to the sink t with a weight of −1 per unit of flow. The
diagonal arcs have a weight of αx̂ per unit of flow.

Lemma 1. An optimal solution to the dual sub-problem can be computed in time O(n log n+
m), where n and m are the number of nodes and arcs in the graph induced by the master
problem solution x̂.

Proof (Proof sketch). There are two possibilities to satisfy the demand of a node (i, t) for
t < T : either from s or from (i, T ). Note that, every unit of supply of (i, T ) we do not
use in this way decreases the objective of the min-cost flow problem by 1 by sending it to
t. Hence, an optimal solution to the sub-problem can be computed as follows. For every
node, we compute a shortest path from s with respect to arc lenghts αx̂. If the shortest-
path distance of a node (i, t) is less than 1, we satisfy its demand by sending flow along the
shortest path from s; otherwise, we satisfy the demand by sending flow from (i, T ) via the
arcs corresponding to variables uit. Note that that these shortest paths can be computed
for all nodes by one run of Dijkstra’s algorithm.
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1 Introduction

Scheduling jobs with time-dependent V-shaped processing times on a single machine
minimizing makespan Cmax is an NP-hard scheduling problem even if all jobs have the same
slopes, but it permits a fully polynomial time approximation scheme (FPTAS), even for
job-dependent slopes if they are agreeable (Sedding 2020a). We improve the FPTAS run-
time by factor 1/ε (up to log terms) by giving an alternative dynamic programming (DP)
formulation and employing the recent advances in Alon & Halman (2021) that let us apply
the technique of K -approximation sets and functions.

Job deterioration is a common theme in time-dependent scheduling (Gawiejnowicz 2020,
Sedding 2020a): The processing time is linearly dependent on the job’s start time t, defined
by function pj(t) = ℓj+bjt for basic processing time ℓj ≥ 0 and slope bj ≥ 0. Minimization
of Cmax requires to order the jobs by ℓj/bj nondecreasingly (jobs with bj = 0 last).

We study the extension to shortening as well as deteriorating processing times in a V-
shape (Sedding 2020a), which model walking time for assembly operations, from a moving
assembly line to a statically positioned supply at the line side. Constant times can only
upper bound that, and are 51% higher in an extended case in Sedding (2023).

An instance specifies rational-valued ℓj ≥ 0, bj ≥ 0, a shortening slope 0 ≤ aj ≤ 1, and
a common ideal start time τ . Then, a job’s processing time is defined by

pj(t) = ℓj +max{−aj (t− τ), bj (t− τ)}. (1)

A solution is then structured into three parts (in that order): a first sequence S1 that
completes strictly before τ , a straddler job χ that starts no later than at τ and completes
not earlier than at τ , and a second sequence S2. Interestingly, the straddler job is not
necessarily the shortest job. Within sequence S2, jobs are sorted nondecreasingly by ℓj/bj ;
while in S1, they are sorted nonincreasingly by ℓj/aj . Hence, solving an instance involves
to select a straddler job, and a partition of the other jobs into the two sorted sequences.
This problem is NP-hard already for common slopes (aj = a and bj = b), which is shown
in Sedding (2020a), as well as for the all-zero aj case (Kononov 1997, Kubiak & van de
Velde 1998), and the for all-zero bj case (Cheng, Ding, Kovalyov, Bachman & Janiak 2003).

Let us only consider the special case where the basic processing times and slopes have
agreeable ratios: ℓi/ai ≤ ℓj/aj ⇐⇒ ℓi/bi ≤ ℓj/bj for any pair of two jobs i, j. This case
still permits an FPTAS, which is shown in Sedding (2020a). We give a faster FPTAS based
on the technique of K-approximation sets and functions, introduced in Halman, Klabjan,
Mostagir, Orlin & Simchi-Levi (2009), by reformulating the problem as a certain monotone
dynamic program (DP) that falls into the FPTAS framework of Alon & Halman (2021).
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Employing it allows us to omit an explicit algorithm statement, and directly conclude
running time and approximation error. The resulting FPTAS’s runtime dependency on
n is in O(n6), and is linear in 1/ε up to log terms, i.e., faster by a factor of 1/ε up
to log terms than the tailor-made FPTAS in Sedding (2020a). As the considered problem
includes special cases like all-zero aj slopes, or all-zero bj slopes, specialized FPTASes (Cai,
Cai & Zhu 1998, Halman 2020, Kovalyov & Kubiak 1998, Kovalyov & Kubiak 2012, Ji &
Cheng 2007, Sedding 2020b) can be substituted with our approach.

2 Dynamic Program

Based on the DP in Sedding (2020a), we introduce an alternative formulation as a
certain monotone DP. First of all, reindex the jobs such that the straddler job χ is job n+1.
Let state x of the n-stages dynamic program denote the (exact) completion time of the
sequence of jobs that are executed before time τ , assuming that it can start being processed
as early as time 0 (to be called first sequence Sj

1, containing jobs from set {1, . . . , j}).
Because the straddler job starts by τ , the range of the state space for x is the rational
valued interval [0, τ ]. For every stage j = 1, . . . , n, we define two functions of the state x.

The first function, denoted by zj(x), refers to a second sequence Sj
2(x) scheduled to

start exactly at τ that minimizes the objective for all jobs 1, . . . , j, and contains only the
jobs {1, . . . , j} \ Sj

1. The value of zj(x) is explicitly not the objective value, but rather the
makespan of Sj

2(x) from τ to the completion time of the last job in the sequence. This
makespan can be derived from Sedding (2020a, Eq. (6)) and, given state x and defining
F (i, Sj

2(x)) ⊂ Sj
2(x) as the set of jobs that follow job i in Sj

2(x), is equivalent to

zj(x) =
∑

i∈Sj
2(x)

(
ℓi ·
∏

f∈F (i,Sj
2(x))

(1 + bf )
)
. (2)

After stage n, the straddler job χ is appended to the end of the first sequence Sn
1 , then

the second sequence Sn
2 follows, and the resulting completion time is the objective value.

To calculate it, we use a second function, denoted by yj(x), that describes the proportional
increase of sequence Sj

2(x)’s makespan zj(x) if increasing its start time, when having the
jobs in Sj

1(x) and Sj
2(x) as determined by the state variable x (see below).

Algorithm 1 (DP). The alternative dynamic programming algorithm’s steps are as follows.

1. Initialize functions z0(·) ≡ 0 and y0(·) ≡ 1 over their entire domain [0, τ ].
2. For all j from 1 to n:

(a) To append job j to the end of S1, define

z′(x) = zj−1

(
x−ℓj−ajτ

1−aj

)
, ℓj + ajτ ≤ x ≤ τ. (3a)

To prepend job j to the beginning of S2, define

z′′(x) = ℓj · yj−1(x) + zj−1(x), 0 ≤ x ≤ τ. (3b)

(b) For S2’s makespan, define

zj(x) =

{
z′′(x), if 0 ≤ x < ℓj + ajτ,

min{z′(x), z′′(x)}, if ℓj + ajτ ≤ x ≤ τ,
0 ≤ x ≤ τ. (3c)

(c) For S2’s start-time-dependent makespan increase, define, for 0 ≤ x ≤ τ ,

yj(x) =





(1 + bj) · yj−1(x), if 0 ≤ x < ℓj + ajτ,

(1 + bj) · yj−1(x), if ℓj + ajτ ≤ x ≤ τ and zj(x) = z′′(x),

yj−1

(
x−ℓj−ajτ

1−aj

)
, if ℓj + ajτ ≤ x ≤ τ and zj(x) = z′(x).

(3d)
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3. Return completion time

Cχ
max = inf

0≤x≤τ
{τ + yn(x) ·max{x+ pχ(x)− τ, 0}+ zn(x)}. (3e)

Let us explain the DP recursion. Regarding function z′(·) in Step 2(a), to attain that
job j finishes at time x, we need job j − 1 to finish at time x−ℓj−ajτ

1−aj
. If ℓj + ajτ > τ ,

then the domain of the function is empty, i.e., job j cannot be processed as a job of the
first sequence because even if starting at time zero, it will finish after time τ . In this
case, function z′ is undefined, in Step 2(b) we set zj(x) ≡ z′′(x), and in Step 2(c) we set
yj(x) ≡ (1 + bj) · yj−1(x).

Suppose the infimum in Step 3 is reached at a point x∗. The overall job sequence then
is S = Sn

1 (x
∗), (χ), Sn

2 (x
∗) and can be found by backtracking. If in stage j the state’s value

when performing backtracking from zn(x
∗) (i.e., the corresponding value of x∗j in zj(x

∗
j ))

was generated by assigning the value of z′j(x∗j ) to zj(x∗j ) (hence x∗j = x∗j−1 + ℓj + aj · (τ −
x∗j−1)), then we append job j to the end of Sj−1

1 . If it instead was generated by assigning
the value of z′′(x∗) to zj(x∗) (hence x∗j = x∗j−1), we insert job j to the beginning of Sj−1

2 .
In Step 3, the straddler job χ is appended to the end of Sn

1 (x
∗), and Sn

2 (x
∗) is started at

max{x∗+pχ(x∗), τ} with pχ as in (1). If χ completes strictly before τ , idle time is inserted
before starting the second sequence such that it starts precisely at τ ; in this case the result
is dominated by a solution for another straddler job.

3 Fully Polynomial Time Approximation Scheme

Alon & Halman’s (2021) framework is used to derive an FPTAS for the DP. For the
ease of presentation, instead of referring directly to Alon & Halman (2021), we cite from
the concise summary available in Gawiejnowicz, Halman & Kellerer (2023, Appendix A).

We convert the DP (Algorithm 1) to integer values by multiplying all input numbers
τ = qτ/rτ , ℓj = qℓj/rℓj , aj = qaj

/raj
, bj = qbj/rbj byM := rτ

∏n
j=1(rℓj ·raj

·(raj
−qaj

)·rbj ).
Note that the factor (raj − qaj ) turns 1/(1− aj) in (3a) into an integer, since 1/(1− aj) =
1/(1 − qaj/raj ) = raj/(raj − qaj ). Doing so, the state space of x becomes the integer
interval [0, 1, . . . , τM ]. Moreover, we divide the output value in (3e) by M to get back the
unscaled objective value. Therefore, the DP is solved in O(n · τM) time, which is to be
repeated for each possible straddler job. Observing that M is in O(N4n+1) for

N := max
j=1,...,n

{qτ , rτ , qℓj , rℓj , qaj
, raj

, qbj , rbj}, (4)

we conclude that the DP runtime is exponential in the number of input items (and is
therefore not pseudo-polynomial).

Nevertheless, the DP (Algorithm 1) can be seen as a special case of Gawiejnowicz et al.
(2023, Eq. (12)) in the following sense: (i) we set the level index t to be the index j and
therefore the number of levels is T = n, i.e., the number of jobs to schedule; (ii) regarding
DP equation (12) in Gawiejnowicz et al. (2023), we set ft,1 = zt and ft,2 = yt, therefore
the other index i is either 1 or 2, and m = 2; (iii) we set the state variable It,i to be x, i.e.,
the completion time of the sequence of jobs that are executed before time τ ; (iv) for every
pair of levels t and i we set the additional information At,i(x) to be the conditions stated
in step 2 of the DP, which determine the values of ft,i in each case; (v) when considering
level t in Gawiejnowicz et al. (2023, Eq. (12)), instead of using all previously calculated
{zr,j}0≤r<t,1≤j≤2, we use only {zr,j}r=t−1,1≤j≤2; (vi) we set the boundary functions to be
f0,1 ≡ 0 and f0,2 ≡ 1. Thus, from (i)–(vi), we conclude that DP (Algorithm 1) is indeed a
special case of Gawiejnowicz et al. (2023, Eq. (12)).
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Next, we set a bound Uz on the ratio between the maximal value of functions zj(·), yj(·)
and their minimal non-zero value to be Uz ≤ (MN)n (e.g., the product

∏n
j=1(1+ bj) after

the scaling), and a bound US on the cardinality of the state space to be US =MN .
Functions yj(x) and zj(x), for j = 1, . . . , n, are monotone non-increasing, since as x

grows the problem becomes less constrained, i.e., there is more space available for scheduling
jobs between 0 and x. Therefore, the DP (Algorithm 1) is monotone and Condition A.1
in Gawiejnowicz et al. (2023) is satisfied; as well, it can be shown that Conditions 2–4(i) are
satisfied, which grant us an approximated DP. Its last step is polynomial since computing
the infimum in (3e) corresponds to calculating the minimum in the pseudo-polynomial
state space [0, 1, . . . ,Mτ ] while the approximated functions yn, zn are step functions with a
polynomial number of steps. Finally, we use parameter value τf ∈ O(n) to apply Theorem 4
in Gawiejnowicz et al. (2023) for each possible straddler job, and obtain an FPTAS.

Theorem 1. There exists an FPTAS to minimize the makespan Cmax on a single machine
with time-dependent V-shaped processing times that runs in O

(
n6

ε · log
2N · log n logN

ε

)

time, where N is the maximal value of the numbers in the input, as defined in equation (4).

This runtime is by 1/ε (up to log terms) lower than Sedding’s (2020a) FPTAS runtime,
which is in O

(
n5

ε2 · log(1 + bmax) · (log(1 + bmax) + n · log(1 + bmax))
)
.
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1 Introduction

The job-shop scheduling problem (JSSP) is a well studied and NP-hard problem where
a set of jobs are to be processed on a set of machines. Each job is composed of a sequence
of operations that must be processed on machines with given processing times in a given
job-dependent order, and each machine can process only one operation at a time. The
JSSP has received considerable attention and both metaheuristics and exact methods have
been developed to solve the problem, the majority of them with the assumption that
the parameters are deterministically known. However, in the real world, many sources of
uncertainty can affect the quality and even the feasibility of a schedule.

There exist two major approaches to deal with data uncertainty: stochastic optimization
and robust optimization. While stochastic optimization considers probability distribution,
robust optimization assumes that uncertain data belong to a given uncertainty set and
aims to optimize performance considering the worst-case scenario within that set.

In this paper, we propose exact solution methods to solve the robust job-shop scheduling
problem. A two-stage robust optimization approach is used to deal with processing times
uncertainty, where the first stage fixes the sequence of operations on machines whilst the
second stage sets the operation start times.

2 Problem statement

An instance of the JSSP implies a set of jobs J and a set of machines M. Each job
i ∈ J consists of a sequence of ni operations. The jth operation Oi,j ∈ Oi of a job i must
be performed by machine µi,j ∈ M (with µi,j = m ⇐⇒ Oi,j ∈ Im, where Im is the set
of operations processed by machine m) and pi,j denotes its processing time. Each machine
can process at most one operation Oi,j ∈ Im at a time, each job can only be processed
on one machine at a time, and preemption is not allowed: once an operation is started, it
must be processed without any interruption.

We consider that the processing times of operations are uncertain. Each processing time
pi,j of an operation Oi,j ∈ Oi, i ∈ J , belongs to the interval [p̄i,j , p̄i,j + p̂i,j ], where p̄i,j is
the nominal value and p̂i,j the maximum deviation of the processing time from its nominal
value.

The traditional robust optimization approach consists in protecting against the case
when all parameters can deviate at the same time, which makes the solution overly conser-
vative. Indeed, there is a very low probability that all parameters take their worst value all
together. To overcome this limitation, Bertsimas (2004) introduces an uncertainty budget

Booklet of abstracts for the 19th International Workshop on Project Management and Scheduling, April 2�5, 2024

61



approach that allows a restriction on the number of deviations that can occur simulta-
neously to a given budget. In order to reach a trade-off between robustness and solution
quality, we exploit this approach to define the uncertainty set.

Let Γ be the budget of uncertainty, i.e., the maximum number of operations whose
processing time can deviate simultaneously. For each scenario ξ, the processing time of
operation Oi,j is given by:

pi,j(ξ) = p̄i,j + ξi,j p̂i,j (1)

where ξi,j is equal to 1 if the processing time of the operation deviates, 0 otherwise
We then define the uncertainty set UΓ as:

UΓ = {(ξi,j)i∈J ,1≤j≤ni |
∑

i∈J

ni∑

j=1

ξi,j ≤ Γ}. (2)

The robust multi-stage optimization, introduced by Ben-Tal (2004), considers that a
part of the decision variables must be instantiated before the uncertainty is revealed, while
the other variables can be adjusted to the uncertainty realization. In our problem, we
consider that the purpose is to find the sequence on the machines (first stage decisions),
allowing to define a start time for each operation and each scenario (second stage decisions),
minimizing the makespan in the worst-case scenario.

3 Solution methods

A robust problem can be solved using an extended formulation, which consists in dupli-
cating the set of constraints involving uncertain parameters (in the present case, operation
processing times) for all possible scenarios ξ ∈ UΓ . Usually formulated as a linear program-
ming problem, it is also possible to adopt a constraint programming approach (Juvin 2023).

However, according to the structure of our uncertainty set, the number of scenarios
increases exponentially with the number of operations, which quickly makes these models
intractable. Therefore, in this section we deal with the evaluation of a worst-case scenario.
This study then allows us to propose a compact formulation and decomposition methods
of the problem.

3.1 Worst-case evaluation

In this section, it is assumed that a first-stage solution σ is given. Considering an
uncertainty budget Γ , the worst-case evaluation is to identify a scenario, with at most
Γ operations whose duration deviates, and that leads to the largest possible makespan.
This problem can also be treated as the evaluation of a longest path in an directed acyclic
graph (DAG). Such a method is actually used by Bold (2021) in the context of a robust
resource-constrained project scheduling problem (RCPSP).

3.2 Compact model

As Bold (2021) for the robust RCPSP, we propose a compact formulation of the robust
JSSP, based on the dual of the worst-case evaluation subproblem. We introduce the vari-
ables Cγ

i,j , which represent the end date of operation Oi,j in the worst case, taking into
account at most γ deviations. The compact model is as follows:

minCmax (3)

s.t. Cmax ≥ CΓ
i,ni

∀i ∈ J (4)
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Cγ
i,j ≥ Cγ

i,j−1 + p̄i,j ∀i ∈ J ,∀j ∈ {2, . . . , ni},∀γ ∈ {0, . . . Γ} (5)

Cγ
i,j ≥ Cγ−1

i,j−1 + p̄i,j + p̂i,j ∀i ∈ J ,∀j ∈ {2, . . . , ni},∀γ ∈ {1, . . . Γ} (6)

Cγ
i,j ≥ Cγ

i′,j′ + p̄i,j − yi,j,i′,j′ ·H ∀m ∈M,∀(Oi,j , Oi,j′) ∈ I2m,∀γ ∈ {0, . . . Γ} (7)

Cγ
i,j ≥ Cγ−1

i′,j′ + p̄i,j + p̂i,j − yi,j,i′,j′ ·H ∀m ∈M,∀(Oi,j , Oi,j′) ∈ I2m,∀γ ∈ {1, . . . Γ} (8)

Cγ
i′,j′ ≥ Cγ

i,j + p̂i,j − (1− yi,j,i′,j′) ·H ∀m ∈M,∀(Oi,j , Oi,j′) ∈ I2m,∀γ ∈ {0, . . . Γ} (9)

Cγ
i′,j′ ≥ Cγ−1

i,j + p̂i,j + p̂i,j − (1− yi,j,i′,j′) ·H ∀m ∈M,∀(Oi,j , Oi,j′) ∈ I2m,∀γ ∈ {1, . . . Γ}
(10)

C0
i,1 ≥ p̄i,1 ∀i ∈ J (11)

Cγ
i,1 ≥ p̄i,1 + p̂i,1 ∀i ∈ J , ∀γ ∈ {1, . . . Γ} (12)

3.3 Decomposition methods

We present a logic-based Benders decomposition method (Hooker 2000) as well as a
column and constraint generation method (Zeng 2013). These two iterative approaches
aim to decompose the problem into a master problem, and an adversarial subproblem, and
share the same pattern. The master problem is formulated with an extended model for the
robust job-shop problem (using MILP or CP) considering only a subset of scenarios and
the subproblem evaluates the worst-case scenario. At each iteration, information relating
to this worst-case scenario is added to the master problem.

For the Benders decomposition method, adding information about the violated scenarios
consists in adding cuts in the master problem. Note that only the MILP formulation of the
master is considered. The added cuts are as follows:

Cmax ≥ ψ∗
h · (1−NumberOfChangesh) (13)

where ψ∗
h is the worst-case makespan obtained by the adversarial subproblem at iteration

h and NumberOfChangesh is the number of changes, compared with the decisions made
at the first stage of iteration h, that could affect the value of makespan. If no influential
changes occur, then the makespan is at least equal to ψ∗

h; otherwise, the constraint is
inactive.

For the column and constraint generation procedure, adding information about the
violated scenario consists in generating the corresponding second-stage decision variables
and the associated constraints. This is simply adding the worst-case scenario to the set of
scenarios considered in the next iteration of the master:

Uk+1 = Uk ∪ {ξ∗k}. (14)

4 Numerical results

For computational experiments, we consider 58 classical instances of the job-shop prob-
lem from the literature, adapted to the robust context by randomly generating deviation
values. We test all the models by varying the uncertainty budget according to four ratios:
5,%, 10,%, 15,% and 20,%, i.e. a total of 232 experiments per method.

The results of Table 1 are presented in terms of the number of best solutions found
compared to the other methods ("best"), as well as the optimality gap ("gap (%)") obtained
by each method.

For the smallest instances (6×6), all the methods succeed in finding the optimal solution
(except one for the CCGMILP method). For 10-machine instances, the Benders method
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|J | |M| # Compact Benders CCGMILP CCGCP

best gap (%) best gap (%) best gap (%) best gap (%)
6 6 4 4 0 4 0 3 0.5 4 0
10 5 20 17 13.8 16 34 7 8.45 15 3.5
10 10 72 28 20.64 43 45.15 5 27.85 9 24.49
15 5 20 12 43.75 6 57.3 6 57.4 20 1.05
15 10 20 1 44 7 58.3 6 58.45 10 33.8
15 15 20 0 40.8 6 60.25 6 60.1 11 42.4
20 5 24 2 61.63 4 70.54 4 70.58 24 3.88
20 10 20 0 50.8 1 67.5 2 67.45 18 31.85
20 15 12 0 – 1 65.75 0 65.67 11 47.25
30 10 20 0 – 0 79.65 0 79.25 20 18.3

Table 1. Number of best solutions found and average optimality gap for job-shop instances from
the literature, categorized according to the instance size.

obtains the largest number of best solutions, but with relatively high optimality gaps.
Finally, the CCGCP method obtains the highest number of best solutions for the largest
instances.

5 Conclusion

In this paper, we study the robust job-shop scheduling problem where operation pro-
cessing times are uncertain and modeled by an uncertainty budget. We consider a two-stage
decision process, where the sequences of operations must be decided before knowing the
realization of the uncertainty, in order to be feasible for all scenarios, but where the pro-
cessing dates of the operations can be adapted according to the observed durations. We
propose a compact formulation and two decomposition methods based on solving a relaxed
master problem and finding violated constraints at each iteration. For the largest instances,
decomposition methods, in particular the column and constraint generation method with
a master problem solved using constraint programming, yields better quality solutions.
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1 Introduction

Flow shops are widely studied machine environments in which all jobs must visit all
machines in the same order (Emmons and Vairaktarakis 2012). While conventional �ow
shops assume that each job traverses the shop only once, many industrial environments
require jobs to pass through the shop multiple times before completion. This setting is
called a �ow shop with reentry and has numerous applications, such as integrated circuit
manufacturing where multiple layers of patterns are placed on the same wafer (Graves et
al. 1983) or manufacturing environments that require frequent job repair/rework (Yu and
Pinedo 2020).

We consider a �ow shop withmmachines in series and n jobs that have to make multiple
loops through the shop, i.e., after traversing the shop and completing its processing on the
last machine, a job must return to machine 1 and traverse the shop again until it has
completed all of its loops. The planning problem is to schedule all loops of all jobs while
minimizing the total (unweighted) completion time.

Flow shops with reentry have received considerable attention in the literature (Choi
and Kim 2008, Danping and Lee 2011, Shufan et al. 2023). Most publications in this area
focus on minimizing the makespan. Yu and Pinedo (2020) propose the �Most Remaining
Loops �rst� (MRL) rule and show that it minimizes the makespan under certain conditions,
including unit processing times. The total completion time objective is examined by Jing et
al. (2011), who propose a k-insertion heuristic to solve the problem. However, to the best of
our knowledge, there is no analysis of optimal scheduling policies for the total completion
time objective in the literature.

In this paper, we analyze the total completion time objective for �ow shops with reentry.
Since this problem is already strongly NP-hard for conventional �ow shops with two or more
machines (Garey et al. 1976), we consider the special case with unit processing times. We
introduce so-called �non-interruptive� schedules, in which the next loop of any job starts on
machine 1 as soon as its previous loop completes on the last machine, and show that there
is a non-interruptive schedule that minimizes the total completion time. Additionally, we
introduce the �Least Remaining Loops �rst� (LRL) rule and show that it minimizes the
total completion time.

The remainder of this paper is organized as follows. In Section 2, we describe the plan-
ning problem in detail and provide an example. In Section 3, we analyze total completion
time optimal schedules. In Section 4, we conclude the paper and give an outlook on future
research.
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2 Problem description

Consider a �ow shop environment with m machines in series and n jobs. Each job
j = 1, . . . , n traverses all machines Lj times; after completing its processing on the last
machine, a job must return to machine 1 to begin its next loop until it completes its last
loop and exits the system. Let pijk be the processing time of job j on machine i in loop
k; we assume pijk = p = 1. Let ℓ(j, k) refer to loop k of job j. In what follows, we only
consider permutation schedules. For reentrant �ow shops, these schedules are de�ned by
considering each loop of a job as a sub-job. In total,

∑
j=1,...,n Lj loops must be sequenced

while adhering to precedence constraints between successive loops of the same job. These
precedence constraints take the form Sjk ≥ Cj,k−1 for all jobs j = 1, . . . , n and all loops
k = 2, . . . ,Lj , where we denote the start time of loop ℓ(j, k) on machine 1 as Sjk and its
completion time on machine m as Cjk. A job is completed once its last loop is completed,
i.e., Cj = CjLj

. Our objective is to �nd a permutation schedule σ that minimizes the total
completion time

∑
j=1,...,n Cj .

We illustrate the planning problem through the following example.

Example 1. Consider a reentrant �ow shop with m = 3 machines
and n = 4 jobs. The jobs require L1 = 2, L2 = 3, L3 = 3,
and L4 = 4 loops. The Gantt chart for permutation sequence σ =
[ℓ(1, 1); ℓ(2, 1); ℓ(3, 1); ℓ(1, 2); ℓ(4, 1); ℓ(3, 2); ℓ(2, 2); ℓ(4, 2); ℓ(3, 3); ℓ(2, 3); ℓ(4, 3); ℓ(4, 4)]
is displayed in Figure 1. We observe that machine 1 is idle for two time units as loop
ℓ(4, 4) can only start on machine 1 after loop ℓ(4, 3) is completed on machine 3. The total
completion time of this schedule is C1 + C2 + C3 + C4 = 45.

Fig. 1: Gantt chart for the schedule of Example 1
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3 Total completion time optimal schedules

In this section, we �rst introduce non-interruptive schedules and show that there is a
non-interruptive schedule that minimizes the total completion time. Then, we introduce
the priority rule �Least Remaining Loops �rst� (LRL) and show that it minimizes the total
completion time.

De�nition 1. In a non-interruptive schedule, the next loop of any job starts on machine
1 as soon as its previous loop completes on machine m, i.e.,

Sjk = Cj,k−1 (j = 1, . . . , n, k = 2, . . . ,Lj)

The following theorem establishes the relationship between non-interruptive schedules
and total completion time optimal schedules for reentrant �ow shops with unit processing
times.
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Theorem 1. There is a non-interruptive schedule that minimizes the total completion
time.

Proof. The proof is by contradiction. Suppose that no non-interruptive schedule has mini-
mal total completion time. Then an optimal schedule must have at least one interruption.
We consider the last interruption, i.e., the last time t at which a loop ℓ := ℓ(j, k) with
k < Lj completes on machine m, but loop ℓ′ := ℓ(j′, k′) starts on machine 1. As t is the
last interruption, there are no interruptions from time t+ 1 on.

We create a schedule without interruption at time t by interchanging loop ℓ′ and all
loops that are processed consecutively after ℓ′ with loop ℓ and all loops that are pro-
cessed consecutively after ℓ. We illustrate this interchange via the schedule of Example 1
in Figure 2, where ℓ′ = ℓ(4, 1) and ℓ = ℓ(2, 2).

By analyzing the impact of this interchange on the total completion time, we can show
that either the original schedule is not optimal or that the new schedule has the same total
completion time; both contradict our assumptions.

Fig. 2: Demonstration of the interchange

t

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

4

4

4

(a) Schedule before interchange
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(b) Schedule after interchange

We now introduce the priority rule LRL.

De�nition 2. The �Least Remaining Loops �rst� (LRL) priority rule schedules, whenever
machine 1 becomes available, the next loop of a job that has, among all available jobs, the
least loops remaining.

We display an LRL schedule for the instance of Example 1 in Figure 3.
We now prove that LRL minimizes the total completion time for reentrant �ow shops

with unit processing times. The proof uses a similar interchange argument as the previous
proof.

Theorem 2. LRL minimizes the total completion time.
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Fig. 3: Schedule generated via priority rule LRL
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Proof. The proof is by contradiction. Suppose LRL does not minimize the total completion
time. This means every optimal schedule does not act according to LRL at least once.
According to Theorem 1, we can assume that an optimal schedule has no interruptions.
Let time t be the last time the optimal schedule does not act according to LRL with loop
ℓ′ being scheduled while loop ℓ would have had priority according to LRL. With a similar
interchange as in the proof of Theorem 1, we can show that either the original schedule is
not optimal or that the new schedule has the same total completion time; both contradict
our assumptions.

4 Conclusion and outlook

In this paper, we considered scheduling a set of jobs that must go through multiple
loops in a �ow shop with as objective the minimization of the total completion time. We
introduced non-interruptive schedules and showed that there is a non-interruptive schedule
that minimizes the total completion time. We introduced the priority rule LRL and showed
that it minimizes the total completion time.

For future research, we propose to analyze the conditions under which LRL minimizes
the total completion time in proportionate or machine-ordered �ow shops. Additionally, we
propose to investigate the total weighted completion time objective. For this problem, an
analysis of the �Weighted Least Remaining Loops �rst� (WLRL) rule would be a promising
research direction. Preliminary tests have shown an average performance ratio of 1.01 and
a worst-case ratio of about 1.2.
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1 Introduction

The resource-constrained multi-project scheduling (RCMPSP) has been subject to re-
search for decades. First introduced by Pritsker et. al. (1969), the RCMPSP considers a
central decision-maker scheduling several projects p ∈ P competing for a shared pool of
resourcesR over discrete-time horizon T = 1, . . . , |T |. Each project p can be represented by
an activity-on-the-node (AON) network Gp = {Vp, Ep}; where the node set Vp represents
the activities of project p, and the edges Ep represent precedence relationships between
pairs of activities. Each activity j has to be processed for a duration of dj periods, requir-
ing rjk units of resource k during processing. The resources k ∈ R to process activities
are scarce and have a limited capacity of Rk units. Using, pulse variables xjt that take the
value 1, if activity j is started in period t, and 0 otherwise, the RCMPSP reads as follows:

min f(x) (1)

s.t.
∑

t∈T
xjt = 1 ∀p ∈ P, j ∈ Vp (2)

|T |∑

τ=t−di+1

xiτ +
t∑

τ=0

xjτ ≤ 1 ∀p ∈ P, (i, j) ∈ Ep (3)

∑

p∈P

∑

j∈Vp

t∑

τ=t−dj

rjkxjτ ≤ Rk ∀k ∈ R, t ∈ T (4)

xjt ∈ {0, 1} ∀p ∈ P, j ∈ Vp, t ∈ T (5)

Objective (1) seeks to minimize some linear function, e.g., the sum of weighted project
completion times. Constraints (2) ensure that each activity starts exactly once. Constraints
(3) are precedence constraints. Constraints (4) limit the resource usage by their capacity,
and Constraints (5) define the variable domains. For conciseness, we represent Constraints
(2), and (3) by Ax̄ ≤ b. Note that we use x̄ to indicate that we refer to a vector of decision
variables rather than a single variable. The matrix A has a block-angular structure:

A =




A1

A2

. . .
A|P|




Each block Ap corresponds to one project p ∈ P, which opens the door for decomposing
the problem by projects. However, most solution approaches for the RCMPSP merge all
projects into a super-project, resulting in a single-project scheduling problem. While it
is convenient to use a single-project approach, it neglects the opportunity to exploit the
block-angular structure. An exception is the work of Deckro et. al. (1991), which uses
column generation (CG) techniques for decomposing the RCMPSP by projects.

However, CG has not been adopted by the project scheduling community, and only a
few attempts have been made to use CG for project scheduling problems. Presumably, CG
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is not competitive for project scheduling compared to other solution algorithms. However,
in other domains (e.g., vehicle routing), branch-and-price (B&P) approaches, which embed
CG algorithms in a branching framework, have become the standard. Hence, the question
arises as to why CG and B&P do not seem to work for project scheduling. In this work, we
seek to answer this question. For this purpose, in Section 2, we provide a CG formulation of
the RCMPSP and analyze its lower bounds. In Section 3, we evaluate different branching
strategies. Finally, Section 3.2 concludes this paper by summarizing our initial findings.

2 Column Generation

CG is used to solve linear programs (LPs) with a huge number of variables (Barnhart
et. al. 2001). Such problems often arise from reformulations, which may have tighter relax-
ations and thus give better bounds. To solve such problems, CG considers only a subset
of all variables (columns) in a so-called restricted master problem (RMP). After solving
the RMP, its dual values are used to check if a column with negative-reduced costs is not
considered yet. A so-called pricing problem, which seeks to generate a new column with
minimal reduced costs, is used for this check. If a new column with negative reduced cost
is found, the column is added to the RMP, and the process is repeated. Often, only a few
columns are sufficient to solve the problem to optimality. Furthermore, for problems with
a block-angular matrix, the pricing problem can be decomposed into several smaller prob-
lems. To apply CG to the RCMPSP, we reformulate the problem by providing the RMP
in Section 2.1 and the pricing problems in Section 2.2.

2.1 Restricted Master Problem
For the RMP, we use additional notation. First, let the set Sp contain all schedules

of project p ∈ P, and let S̃p be a subset of these schedules, i.e., S̃p ⊆ Sp. The amount
of resource k demanded by project p using schedule s in period t is denoted by rkpst.
Furthermore, we introduce binary variables Φps, which take the value 1 if project p uses
schedule s and 0 otherwise. Using this notation, we state the RMP as (6) - (9).

min f(Φ) (6)

s.t.
∑

s∈S̃p

Φps = 1 ∀p ∈ P [πp] (7)

∑

p∈P

∑

s∈S̃p

rkpstΦps ≤ Rk ∀k ∈ R, t ∈ T [πkt] (8)

Φps ∈ [0, 1] ∀p ∈ P, s ∈ S̃p (9)

Objective (6) is a reformulation of the original objective function. Constraints (7) ensure
that we select a schedule for each project, also known as convexity constraints. We denote
the dual variable associated with Constraints (7) by πp. Constraints (8) are reformulated
resource constraints associated with the dual variables πkt. Finally, Constraints (9) define
the variable domains.

Proposition 1. The RMP is prone to primal degeneracy.

Proof. Primal degeneracy occurs if several bases represent the same solution. A basis for
the RMP consists of |P|+ |R| × |T | columns. However, due to Constraints (7), an optimal
solution might have only |P| non-zero and but |R| × |T | zero columns. Replacing one of
the zero basic columns with a non-basic column results in a degenerate solution.

Degeneracy is an undesirable property, leading to degenerate pivots in the simplex algo-
rithm, slowing down the solving process.
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2.2 Pricing Problem
The pricing problem seeks to generate new schedules with negative reduced costs. Be-

cause of the block-angular matrix, we can decompose the pricing problem into |P| pricing
problems, one for each project p:

min rcp = f(xp)−
∑

∀k∈R

∑

t∈T
πkt

∑

j∈Vp

t∑

τ=t−dj

rjkxjτ − πp (10)

s.t. Apx̄p ≤ bp (11)
x̄p ∈ {0, 1} (12)

Objective (10) seeks to minimize the schedule’s reduced cost rcp. Constraints (11) are the
subset of the original constraints Ax̄ ≤ b corresponding to project p. Lastly, constraints
(12) define the decision variables for project p.

Proposition 2. The pricing problem has the integrality property, i.e., each vertex of the
polytope described by Apx̄p ≤ bp is integral.

The proof for this observation is provided in (Möhring et. al. 2001) and stems from the
fact that the constraint matrix Ap is totally unimodular (TU), and the right-hand side bp
is integer.

2.3 Lower Bounds

As mentioned, CG is often used because the reformulated problem may have tighter
relaxations and thus give better bounds. However, our analysis shows the following:

Proposition 3. The lower bounds obtained from solving the RMP via CG are equivalent
to the lower bounds obtained from solving the LP relaxation of the original problem.

Proof. From CG theory (Lübbecke and Desrosiers 2005), it is known that if the pricing
problem has the integrality property, then the feasible regions of the CG and the LP
relaxation of the original problem are equivalent. Hence, it follows from Proposition 2 that
the lower bounds are equivalent.

3 Branch-and-Price

CG solves the RMP, a linear relaxation of the reformulated problem. CG can be embed-
ded into a branch-and-bound framework to obtain integer solutions, resulting in a B&P
algorithm. The literature on B&P for project scheduling proposes two branching rules.
First, (Montoya et. al. 2014) and (Coughlan et. al. 2015) propose branching on start times.
Second, (Coughlan et. al. 2015) and (Van Den Eeckhout et. al. 2020) propose branching on
resource demands. Both branching rules are enforced by removing violating columns from
the RMP and adding branching constraints to the pricing problems. In the following, we
formalize the branching rules and analyze their impact on the lower bounds.

3.1 Branching on Start Times

Let S∗
j be the start time of activity j obtained from solving the RMP. If S∗

j is fractional,
we create two child nodes by adding the branching constraints:

∑

t∈T
txjmt ≤ bS∗

j c (left branch)
∑

t∈T
txjmt ≥ dS∗

j e (right branch) (13)
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Proposition 4. Branching on start times does not improve the lower bounds obtained from
the RMP compared to bounds obtained from the LP relaxation of the original problem.

Due to space limitations, we will only sketch the proof: First, we reformulate Constraints
(13) such that the integrality property is maintained. Then, we apply the same reasoning
we used for proving Proposition 3.

3.2 Branching on Resource Demands

Let r∗kpst be the resource demand of project p obtained from solving the RMP. If r∗kpst
is fractional, we create two child nodes by adding the branching constraints:

rkpt ≤ br∗kptc (left branch) rkpt ≥ dr∗kpte (right branch) (14)
Proposition 5. Branching on resource demands may improve the lower bounds obtained
from the RMP compared to bounds from the LP relaxation of the original problem.
Proof. Adding constraints of type (14) to the pricing problem results in a resource-constraint
project scheduling problem, well-known to be NP-hard. From CG theory (Lübbecke and
Desrosiers 2005), it follows that, due to the NP-hardness of the pricing problem, the re-
laxation of the RMP is tighter than the LP relaxation of the original problem. Thus, the
RMP’s lower bounds are at least as good as the bounds of the LP relaxation and potentially
stronger.

4 Future Research

We studied lower bounds and other properties of B&P algorithms for the RCMPSP.
Our next step is an experimental evaluation of the branching rules. This includes analyzing
the impact on the size of the branching tree, lower bounds, and runtimes. Further, we will
evaluate the impact of solving the RMP via Lagrangian relaxation as a remedy for its
degeneracy. Finally, we will benchmark the B&P approach against a commercial solver.
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1 Introduction

The Cumulative Scheduling Problem (CuSP) involves scheduling a set I = {1, . . . , n}
of n tasks, on a resource with a given capacity of m units. Each task i is characterized
by a release date ri, a duration pi, a deadline di, and a resource requirement of ci units.
Energetic Reasoning (ER), originally introduced in (J. Erschler and P. Lopez ), is proving
to be a powerful tool for tackling the CuSP. It focuses on the development of feasibility
tests, commonly referred to as ER checkers, and adjustments concerning time constraints(
L. Hidri, A. Gharbi and M. Haouari ), (A. Tesch ). Several ER checkers have been proposed
in the existing literature. In 1999, (P. Baptiste, C. Le Pape, and W. Nuijten ) proposed an
O(n2) checker that evaluates the energy balance of O(n2) intervals. In 2018, (Y. Ouellet and
C-G. Quimper ) introduced an O(n log2 n) checker based on the Monge Matrix and Range
trees. In ( J. Carlier, A. Sahli, A. Jouglet and E. Pinson ), we presented an O(α(n)n log n)
checker, reducing the number of necessary intervals and following the methodology of
Ouellet and Quimper, where α(n) is the inverse Ackermann function.

The purpose of this presentation is to introduce a new definition of the energetic reason-
ing method for the checker, using an Integer Linear Programming (ILP) model outlined in
Section 2. This ILP program takes into account the integer constraints of ci, which makes
our new checker more powerful than the traditional one. By maximizing the proportion of
tasks executed outside the interval, we minimize the proportion executed inside the inter-
val, thereby obtaining a lower-bound evaluation. The ILP can be solved efficiently using a
dynamic programming approach, allowing us to evaluate the energy balance in the general
case.

2 Tripartition problem: Dynamic programming approach

Here, we introduce a tripartition problem involving a subset of tasks, denoted as J ⊆ I,
with each task having three integer values: ai, bi, and ci. Additionally, two values, mA and
mB, are provided, which are smaller than the overall capacity m. We aim to solve the
following mathematical program:

max
A⊂J ,B⊂J

(∑

i∈A
aici +

∑

i∈B
bici

)
subject to:

∑

i∈A
ci ≤ mA and

∑

i∈B
ci ≤ mB (1)

where A and B represent disjoint subsets of J . Furthermore, letM denote the set J minus
the elements in A and B. This optimization problem can be expressed as the following
integer linear program (ILP):
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P (J ,mA,mB) = max
∑

i∈J
(aicixi + biciyi) (2)

subject to: xi + yi ≤ 1,∀i ∈ J and
∑

i∈J
cixi ≤ mA and

∑

i∈J
ciyi ≤ mB (3)

where xi ∈ {0, 1} (resp. yi ∈ {0, 1}) are binary variables indicating whether task i is in A
(resp. B). This problem can be seen as a variant of the knapsack problem, specifically a
multiple-knapsack problem. In this scenario, we are provided with a set J of items to be
allocated into two knapsacks, each with its respective capacity: mA and mB. Each item
i ∈ J is characterized by its weight ci and its profit per unit weight bi (resp. ai) when
placed in the first (resp. second) knapsack. The goal is to determine two disjoint subsets A
and B of J corresponding to the contents of the two knapsacks in a way that maximizes
the total profit, represented by the sum of the selected items. To address this problem,
we employ a dynamic programming approach by constructing a table denoted as F . The
entries in this table are computed as follows:

F (0,m1,m2) = 0 ∀m1 ∈ {0, ...,mB},∀m2 ∈ {0, ...,mA} (4)

F (i,m1,m2) = max





F (i− 1,m1,m2),

F (i− 1,m1 − ci,m2) + bici, iff m1 ≥ ci
F (i− 1,m1,m2 − ci) + aici, iff m2 ≥ ci





∀m1 ∈ {0, ...,mB},
∀m2 ∈ {0, ...,mA},

∀i ∈ J
(5)

The terms in the expressions correspond to different cases: F (i − 1,m1,m2) represents
the case where item i is not included in the optimal solution. F (i− 1,m1 − ci,m2) + bici
corresponds to the situation where item i is placed in the first knapsack( iff m1 ≥ ci).
F (i − 1,m1,m2 − ci) + aici corresponds to the case where item i is placed in the second
knapsack( iff m2 ≥ ci). The complexity of this dynamic programming approach is O(n ×
mA ×mB).

3 Energy evaluation of an interval

The objective here is to establish a lower bound on energy requirement within a given
interval [α, δ] using a dynamic programming model. Minimizing this energy requirement is
equivalent to maximizing the parts of tasks that do not fall within the specified interval. Let
J (α, δ) be the set of tasks that consistently interact with interval [α, δ], formally defined
as J (α, δ) = {i ∈ I | ri + pi ≥ α and di − pi ≤ δ}. In this context, bi (resp. ai) denotes
the maximum part of task i that can be processed strictly before α (reps. after δ). We
introduce the concepts of crossing tasks and semi-crossing tasks. These definitions allow a
more precise assessment of the energy balance within an interval.

Definition 1. – A task i is called a crossing task (mandatory part defined in (A. Lahrichi
)) if (di − pi) < α and (ri + pi) > δ. Its minimum energy demand is equal to wi =
(δ − α)× ci.

– A task i is called a plus-semi-crossing task if (ri + pi) > δ and α ≤ (di − pi) ≤ δ.
Its minimum energy demand is equal to wi = (δ − di + pi) × ci, and it is achieved by
scheduling task i at time di − pi (i.e., it finishes after δ).

– A task is called a minus-semi-crossing task if (di − pi) < α and α ≤ (ri + pi) ≤ δ.
Its minimum energy demand is equal to wi = (ri + pi − α) × ci, and it is achieved by
scheduling task i at time ri (i.e., it starts before α).
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There are a total of m′ crossing tasks, leaving (m - m′) resources available. However, some
of these resources are still required by semi-crossing tasks. This leads to mB available
resources before α and mA available resources after δ. Define C(α, δ) (resp. S(α, δ)) to be
the set of crossing (resp. semi-crossing) tasks. Then, let J ′(α, δ) be the set of tasks in
J (α, δ) that do not belong to C(α, δ) ∪ S(α, δ). The total energy over the time interval
[α, δ], denoted as W (α, δ), can be computed by determining a tripartition (A,B,M) of
J ′(α, δ).

W (α, δ) =
∑

i∈C(α,δ)∪S(α,δ)

wi +
∑

i∈J ′(α,δ)

pi − P (J ′(α, δ),mA,mB) (6)

4 New checker

Given an instance of CuSP, if the condition

∀α, δ ∈ N+, α < δ (δ − α)×m−W (α, δ) ≥ 0 (7)

is violated then the considered instance of CuSP is infeasible. We have proved the following
proposition by using non-trivial properties of ILP.

Proposition 1. To ensure that condition (7) holds, it is sufficient to check intervals
[α, δ] ∈ Ω = {[α, δ] | α ∈ O1, δ ∈ O2, α < δ} with: O1 = {ri, ri + pi, di − pi | i ∈ I}
and O2 = {ri + pi, di, di − pi | i ∈ I}.
This checker is more efficient than the one based on classical ER. It can be used to establish
an improved lower bound for the CuSP optimization problem. We conducted experiments to
assess its performance, testing it with randomly generated data using uniform distributions.
Specifically, we generated data with different numbers of tasks (n = 10, 20, 50, 100) and
resource capacities (m = 5, 6, 7, 8, 9, 10). The instances were generated as follows:

– The resource requirements ci are generated between 1 and m.
– For 80% of tasks, the processing times are generated between 1 and 20. For the re-

maining tasks, they are generated between 20 and 50.
– The initial value of Cmax is set to max(max∀i pi, 1.1×

∑
i pici
m ).

– The release dates ri are generated between 0 and (Cmax − pi).
– The deadlines di are generated between pi + ri and Cmax.

Table 1. Results

n m % of instances with LB > LBclass gap(%)

20 7 80 1.439
20 9 87 1.643
20 10 85 1.707
50 7 77 0.587
50 9 83 0.565
50 10 86 0.706
100 7 79 0.314
100 9 78 0.272
100 10 84 0.301

Table 1 provides a summary of the computational results obtained in the generated
instances. In this table, LB represents the lower bound based on the new checker, LBclass
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represents for the classical ER lower bound (represented as LB3 in (J. Carlier, A. Jouglet
and A. Sahli )), and gap denotes the average difference calculated as LB−LBclass

LB . Both
(LB − 1) and (LBclass − 1) correspond to the largest values at which each checker detects
infeasibility.

Based on the obtained results, it is evident that the new checker is more efficient than
the classical one. Specifically, there was a significant improvement in the lower bound in
around 80% of the cases examined, despite the relatively small average deviation between
the two lower bounds.

5 Conclusion

We have proposed a new ER checker for the CuSP based on dynamic programming.
Recognizing the inefficiency of considering all intervals, we have identified specific relevant
intervals [α, δ], where α ∈ {ri, ri + pi, di − pi} and δ ∈ {ri + pi, di, di − pi}. Our implemen-
tation of the algorithm uses these intervals. The results demonstrate its superior efficiency
compared to the classical checker, consequently enhancing the ER lower bound for the
CuSP.

One perspective of this work is to improve the efficiency of the method by introducing
redundant resources as in (J. Carlier and E. Néron ). We are also studying the particular
case of the m-machine scheduling problem. The perspectives of industrials could be to
integrate this checker in their optimization constraint programming software.
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1 Introduction

Hexaly Optimizer (formerly LocalSolver) is a mathematical optimization solver used
to address industrial problems in routing, scheduling, packing, and network design, among
other areas (Gardi et. al. 2014). As such, its main purpose is to produce good primal solu-
tions in a limited amount of computation time. In spite of this focus on primal solutions,
the production of good dual bounds (and proofs of optimality) is interesting for several rea-
sons (reassuring the user about the solver's capabilities, making sure that the formulation
is consistent with the reality, etc.).

In this context, we describe some recent work that aims to improve the dual bounds
calculated by Hexaly Optimizer on scheduling problems without a�ecting its performance
on primal solutions. This paper focuses on makespan minimization. Our goal is to compute
as fast as possible, at the start of the resolution, a decent lower bound on the schedule

makespan in addition to the more expensive bounds calculated during the search. By fast,
we mean a low calculation time compared to that allocated to solving the problem, that is
to say, typically less than a second for problems of a few thousand tasks.

2 Context and notations

To simplify the notations, we assume that the problem is transcribed into the canonical
representation of scheduling problems proposed in (Laborie et. al. 2009). In particular:

� Activities are represented by interval variables xi which can be optional. An optional
interval variable is a decision variable whose possible values are either an interval of
integers [s, e) or a particular value : absent.

� For an interval variable xi, the expressions p(xi), s(xi), e(xi), l(xi) respectively rep-
resent the presence (Boolean), the start, the end and the length (e(xi)− s(xi)) of the
interval when present.

� Temporal constraints are represented by constraints of type: e(xi) ≤ s(xj).
� Presence constraints are expressed as implications of type p(xi)⇒ p(xj).
� The constraint alternative(x, {x1, ..., xn}) means that when x is present, one and only
one of the xi (i ∈ [1, n] ) is present and it is then equal to x. This constraint is commonly
employed to handle machine allocation where activity x must be allocated to one out
of n possible resources.

� The constraint disjoint({x1, ..., xn}) means that the present intervals xi are pairwise
disjoint. Usually, this constraint is used to describe disjunctive resources like single-
capacity machines. It can be complemented with a sequence-dependent setup time
matrix.
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� The constraint cumul({x1, ..., xn}, {y1, ..., yn}) ≤ C, where the yi are integer variables,
means that the accumulation of contributions from intervals xi with value yi do not
exceed C. This constraint is typically used to represent renewable resources.

If z is an integer variable, we denote zmin and zmax respectively as the lower and upper
bounds of the domain of z after the initial propagation of the problem. We also assume a
dummy integer variable h such that ∀i, e(xi) ≤ h (value of the end of the schedule).

3 Lower bounds computation

The calculated lower bounds are based on energetic relaxations of the problem and
implement the components below.

Reformulation of quasi-disjunctive cumuls. As we will see later, some compo-
nents of the calculation of lower bounds consider redundant reformulations of cumul
constraints inspired by (Baptiste and Bonifas 2018). More precisely, for a constraint
cumul({x1, ..., xn}, {y1, ..., yn}) ≤ C, when there exist 3 intervals i, j, k such that ymin

i +
ymin
j + ymin

k > C, an additional (redundant) cumul constraint of capacity 2 is used with
contributions y ∈ {0, 1, 2}, which is optimal from an energy point of view. This reformu-
lation does not rule out any feasible solution. It can be computed in O(n log(n)) for each
cumul. An example of such a reformulation is illustrated on Figure 1.

  

x3

x1 x4

x5

x2

x6l1=6, y1=8

l3=9, y3=5

l4=9, y4=5

l5=5, y5=2

l2=3, y2=3

l6=8, y6=5

C=10

x3

x4

x5

x2

x6l1=6, y1=2

l3=9, y3=1

l4=9, y4=1

l5=5, y5=0

l2=3, y2=1

l6=8, y6=1

C=2

x1

Original formulation Redundant formulation

Fig. 1. Example of quasi-disjunctive cumul reformulation

Energy precedence propagation. The propagation of energy precedence (Laborie
2003) for an interval variable xi participating in a resource constraint (of type disjoint

or cumul) guarantees that for any subset Ω of xi's predecessors in the temporal constraint
graph, the resource contains enough energy to execute all intervals of Ω between the mini-
mal start time of Ω and the start of xi. This propagation makes it possible to increase the
values of smin(xi) even when there is no constraint on the latest end time of the schedule
h. It can be performed for all interval variables and for all subsets Ω with a worst-case
complexity of O(n(p + log(n))) where n denotes the number of interval variables and p
the maximum number of predecessors of a given variable in the precedence graph (p < n).
In our framework, this propagation is executed at the root node of the resolution on all
the disjoint and cumul constraints until a global �x point is reached. Besides the original
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formulation of cumul constraints this propagation also considers the reformulated cumuls.
For example considering the reformulated cumul on the right side of Figure 1 and the sub-
set Ω = {x1, x2, x3, x4, x5} of predecessors of x6, the energy precedence propagation would

infer that interval x6 cannot start before 0 + ⌈ (6·2)+(3·1)+(9·1)+(9·1)+(5·0)
2 ⌉ = 17.

Linear energy relaxation. This relaxation is particularly useful in case of optional
interval variables (resource allocation problems). It consists of a linear program (LP)
whose only decision variables are the Boolean presence variables p(xi). The presence
and alternative constraints are directly translated in the LP. For example a constraint
alternative(x, {x1, ..., xn}) is formulated as:

∑

i∈[1,n]

p(xi) = p(x)

An energetic relaxation is introduced for the resources. For a constraint
disjoint({x1, ..., xn}) we will have:

min
i∈[1,n]

smin(xi) +
∑

i∈[1,n]

p(xi) · lmin(xi) ≤ h

For a constraint cumul({x1, ..., xn}, {y1, ..., yn}) ≤ C we will have:

C · min
i∈[1,n]

smin(xi) +
∑

i∈[1,n]

p(xi) · lmin(xi) · ymin
i ≤ C · h

Reformulated cumul constraints are also considered in the linear relaxation.
This basic formulation is improved by considering the latency durations of the intervals

(minimum length of the longest path after a given interval in the precedence graph) as well
as the inaccessible energy due to the smin(xi) at the start of schedule.

The objective of the linear program is to minimize the end date h. Although the decision
variables p(xi) are Boolean and the problem is an ILP, in practice for performance reasons,
only the LP linear relaxation is solved.The optimal solution of the LP provides a lower-
bound h∗ on the makespan h.

Dichotomy on bounds. The components presented above permit to �nd new bounds for
the start and end of interval variables and for the makespan. Given these bounds, the last
component of the proposed lower bound computation consists in performing a dichotomy
on the objective value in order to �nd the smallest value hLB ∈ [hmin, hmax] such that no
inconsistency is detected when propagating the constraint h ≤ hLB . By construction, hLB

is a valid lower bound on the makespan. This step uses classical propagation algorithms
like the disjunctive constraint for disjoint and timetable constraint for cumul (Baptiste et.

al. 2006).

4 Results

Table 1 summarizes the average deviation of our lower bounds compared to the best-
known primal solutions on some classic scheduling benchmarks. For each of these bench-
marks, the problem was stated using the Hexaly Optimizer formulation provided in the
example tour (Hexaly 2024). The calculation times of bounds are negligible (less than 0.5s).
On the RCPSP, among the 2520 instances tested, 121 lower bounds from the literature are
improved, notably on the largest instances comprising 300 tasks for which more than 25%
of the best known lower bounds are improved (RG300, see (Vanhoucke et. al. 2016)).

1 Flexible jobshop instances: Barnes, Behnke, Brandimarte, Dauzere, Fattahi, Hurink, Kacem.
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Table 1. Average deviation of the lower bounds from the best known solutions

Instances Problem size Deviation

Jobshop (ft*, la*, orb*, tai*) 133 36-2000 6.1%
Flexible jobshop (1) 330 50-500 5.9%
Flexible jobshop with setup times (SDST-HUdata) 20 50-100 15.0%
Openshop (tai*) 60 16-400 0.7%
RCPSP (j30, j60, j90, j120, RG300) 2520 30-300 4.6%

5 Conclusion and future work

The lower bounds described in this article are available in Hexaly Optimizer since
version 12.0. Although the approach proposed in this paper focuses on minimizing the
makespan, additional lower bounding techniques have also been implemented for di�erent
classical scheduling objectives like the (weighted) sum of lateness or tardiness (Petit-Jean
Genat and Laborie 2024). These techniques exploit well-known polynomial algorithms for
single-machine problems2.

The planned extensions aim to improve these fast bounds in the following directions :

� Extend the linear relaxation in particular when interval presence and length are in-
volved in the objective or in side constraints.

� Strengthen constraint propagation (for instance using edge-�nding algorithms).
� Improve the management of the interactions between the single-machine relaxations.

Another idea is to exploit the by-products of the di�erent components to guide the
search toward good primal solutions. These by-products being:

� The solution of the linear relaxation.
� The domain of the variables after the cut h ≤ hLB in the dichotomy on bounds.
� The solutions of the single-machine relaxations.
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1 Introduction

Machine scheduling has a long history in the field of operations research (Potts &
Strusevich 2009). While many great achievements have been made, there have been criti-
cal voices about scheduling research being too far from real-world scheduling needs (McKay
& Wiers 1999). Pinedo (2016) outlines a variety of factors that differ in practical schedul-
ing settings compared to the ones studied in the literature, among which the dynamic
and uncertain nature of real-world applications, but also the complexity and specificity
of real-world problems that are hard to capture in models. The recent decades show
that increasingly more complex scheduling models are being studied in isolation, how-
ever, Dauzère-Pérès, Ding, Shen & Tamssaouet (2024) conclude in their survey on flexible
job shop problems (FJSP) that there is need for more ready-to-use approaches that can
be used to address generic extensions to the FJSP. Most importantly, by making such an
approach publicly available, researchers and practitioners can benchmark new and tailored
approaches, and build on top of this approach to address even more complex problem
variants.

The main contribution of our work is to provide an open-source and easy-to-use Python
software implementation named PyJobShop for modeling and solving scheduling problems
with constraint programming. Our contributions are further divided as follows:

1. We describe a general variant of the classical FJSP that encompasses many real-world
constraints and objectives, building on the work of Dauzère-Pérès et al. (2024).

2. We implement a constraint programming (CP) model using IBM ILOG CP Optimizer
(Laborie, Rogerie, Shaw & Vilím 2018), which is known to consistently outperform
mixed-integer linear programming on benchmark instances of many scheduling prob-
lems (Naderi, Ruiz & Roshanaei 2023).

3. We maintain a library of benchmark instances and their best-known solutions for many
scheduling problem variants, providing a stable reference benchmark library to support
the development of better and tailored solution approaches.

The outline of this abstract is as follows. Section 2 describes the problem. In Section 3,
the PyJobShop software package is introduced, and Section 4 introduces the benchmark
instance library. Section 5 discusses future research.

2 Problem description

In this section, we describe the general variant of the FJSP. We begin by presenting the
classical description of the FJSP in Subsection 2.1 and subsequently introduce extensions
in Subsection 2.2.
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2.1 The classical flexible job shop problem (FJSP)

The FJSP considers a set of jobs J , a set of machinesM, and a set of operationsO. Each
job j ∈ J consists of a set of operations Oj ⊆ O that must be processed in sequence, and
each operation i ∈ O can be processed on any machine in its subsetMi ⊆M. Processing
operation i on one of its eligible machines m ∈ Mi takes pim ≥ 0 time. Furthermore, it
is assumed that the time starts at zero (without losing on generality), machines can only
process one operation at a time, and once an operation has started processing, it must be
completed without interruption. A solution to the FJSP determines for each operation to
which machine it is assigned and when its processing starts and ends, i.e., the sequence in
which the operations are processed for each machine is determined. The goal is to minimize
the makespan.

2.2 General FJSP

In this section, we describe a general variant of the FJSP that PyJobShop currently
supports. This general FJSP includes many constraints that can be found in real-world
scheduling applications. First, we discuss the decision variables of our model, followed by
constraints, and we end this section by discussing the objective functions.

Decision variables. For every job j ∈ J , let Sj ≥ 0 denote the starting time and let
Cj ≥ Sj denote the completion time. Similarly, for every operation i ∈ O, let Si ≥ 0
denote the starting time and let Ci ≥ Si denote the completion time. We denote the
machine assignment of operation i by Ai ∈ Mi. Furthermore, the job decision variables
are related to their operation variables, namely Sj = mini∈Oj

Si and Cj = maxi∈Oj
Ci.

Timing constraints. Timing constraints restrict the domain of timing variables based
on the input data. For job j ∈ J , commonly known timing constraints are release times
rj ≥ 0 and deadlines dj ≥ 0. A release time is the earliest time that a job (and its
operations) are available for processing, whereas a deadline is the latest time that a job
should be completed. There is also a job due date, not to be confused with a deadline,
which is the latest time by which a job must be completed before incurring lateness or
tardiness penalties. One can define timing constraints on the operation timing variables as
well, e.g., the earliest and latest time that an operation can start or end.

Arbitrary precedence graph. In the classical FJSP, it is assumed that the processing
order of operations is sequential, meaning that the (i+1)-th operation can only start when
the i-th operation of a job has finished processing. We consider here the case of arbitrary
precedence graphs on all operations, where a directed acyclic graph dictates the processing
order of the operations O. Each arc (i, k) in the graph defines a precedence relationship
for operation pair (i, k), which do not necessarily need to be part of the same job.

Generalized precedence relationships. Classically, a precedence relationship (i, k)
means that operation k must start not earlier than the completion time of operation i, i.e.,
Ci ≤ Sk. We consider here a more general form of precedence relationships, which restricts
when one operation starts or ends in relation to another. Using the inequality operator (≤)
and equality operator (=), eight combinations can be defined that relate the starting and
completion times of two operations. For brevity, we do not list them here. As an example,
the precedence relation Ci = Sk states that operation k starts the moment that operation
i is completed, which can be used to model no-wait or blocking problems. Moreover, all
precedence relationships can also be extended with a delay l ≥ 0 on the left-hand side, e.g.,
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Ci + l = Sk. These delays can be used to model cases with minimum or maximum time
lags.

Machine connection graph. In practical applications with flow shop characteristics,
it is common for machines to be physically connected such that only some machines are
accessible from one another. The machine connection graph defines the interrelationships
between machines. An arc (m, l) in this graph means that machine m is connected to
machine l. This machine connection graph will be used in the next paragraph to define
assignment relations.

Assignment relationships. Recall that Ai denotes the machine assignment of opera-
tion i. Similar to the precedence relationships, we can define constraints that relate the
assignment decisions of two operations rather than the timing ones. The simplest assign-
ment relations are to assign operations to the same machine (Ai = Ak) or to different
machines (Ai ̸= Ak). Another more common assignment relationship is a machine connec-
tion restriction in hybrid flow shops. For example, consider two operations i and k that
represent the same physical batch and assume that i precedes k. When scheduling opera-
tion i on machine m, operation k should only be scheduled on machines that are reachable
from machine m.

Sequence-dependent setup times. A common extension to many scheduling problems
is the inclusion of sequence-dependent setup times. The parameter stikm ≥ 0 represents the
time that is incurred between the processing of operation i and operation k on machine m.
The setup times are assumed to be anticipatory or non-anticipatory: anticipatory means
that the setup can start before the corresponding operation is available at the machine (if
the machine is idle), whereas non-anticipatory means that the setup can only start when
the next operation has arrived at the machine.

Objectives. Objective functions are computed based on the job completion times. Com-
mon objective functions such as the makespan, total flow time, and total tardiness are all
defined as linear combinations of the job completion times. We plan to support less com-
mon objective functions such as earliness, throughput, or sequence-dependent setup costs
in later versions of PyJobShop.

3 Software implementation

Our software package is available at https://github.com/PyJobShop/PyJobShop/.
The codebase follows good software engineering practices, such as version control and
unit-testing, and provides a simple and generic user modeling interface as illustrated in
Listing 1.1. This interface can be used to define and solve scheduling problems without
specific knowledge of CP technology. In this example, we first define a Model object and
then the jobs and machines. For each job, we define the set of corresponding operations and
assign them to the corresponding job. Then, we define for each operation and machine pair
the corresponding processing time, as well as the precedence relation for each subsequent
operation pair. Finally, calling the solve method solves the defined scheduling problem.

4 Benchmark instance library

We are curating a library of benchmark instances that are sufficiently hard to solve (i.e.,
not solved to optimality within seconds by CP solvers), and we plan to use those instances to
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evaluate our models while also providing a stable benchmark library for other researchers to
compare against. All instances are stored at https://github.com/PyJobShop/Instances
in FJSPLIB format, and we have currently stored all known FJSP benchmark instances.

Code Listing 1.1. Using PyJobShop’s modeling interface to solve a scheduling instance.
import random
from pyjobshop import Model

m = Model ()
jobs = [m.add_job () for _ in range (4)]
machines = [m.add_machine () for _ in range (2)]

for job in jobs:
operations = [m.add_operation(job=job) for _ in range (4)]

for op in operations:
for machine in machines:

duration = random.randint(1, 10)
m.add_processing_time(machine , op, duration)

for idx in range(len(operations) - 1):
op1 , op2 = operations[idx], operations[idx + 1]
m.add_timing_precedence(op1 , op2)

result = m.solve()

5 Future work

Our research is currently being actively developed. The first step is to extend the model
from Section 2, for example to settings with multi-resource considerations or multiple
factories (distributed FJSP). The second step is to implement a CP model with Google
OR-Tools (Perron & Furnon 2023), which is a free and open-source solver, making our
software more accessible. Finally, we are validating the user interface of PyJobShop by
implementing a large-scale scheduling problem for a Dutch compound feed manufacturer.
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1 Introduction

In make-to-order manufacturing, individual products are produced based on incoming
orders with �exible lead time agreements. Considering the operational planning level, the
production is completed at certain times on the manufacturing side, while customer orders
require timely shipment on the distribution side. Inspired by a real-world case of customized
�oor board production, this work focuses on operating transport activities between the
production (P) and the shipping (S) area with a given �eet of homogeneous vehicles located
in an imaginary garage, see Figure 1a. Since completion times and shipping deadlines are
not fully synchronized, see times for products A, B and C in Figure 1a, and storage capacity
in both areas is temporally limited, here by 15 and 60 min, intermediate storage places (L)
are available. Relevant travel links and times are indicated by arcs in Figure 1a.

The intralogistics planning problem involves a set of customer orders to be delivered to S
before a given due date and a set of production orders to be picked up in P after their ready
times. Every production order is uniquely paired with one customer order by an individual
product. P and S feature a limited allowed order waiting time. Orders can be ful�lled
either (i) by one vehicle trip from P to S if the corresponding product is available just in
time or (ii) by two trips from P to a place in L and from there to S. Thus, a warehousing
decision needs to be made for each product and if so, the concrete storage place must be
selected. Order volumes are given in a way so that the capacity of each vehicle and each
storage place is one order and no consolidation is possible. Therefore, each trip is a direct
shipment including pickup, travel and delivery with a given start location, end location,
travel time, earliest starting and latest ending time. Following Emde and Zehtabian (2019)
and Gschwind et. al. (2020), the problem can be rephrased into �nding a sequence of trips
for each vehicle, namely a tour, in a trip-based graph so that all orders are ful�lled and
the total travel time of the vehicles is minimal. These works are extended by allowing
intermediate storage, which leads to alternative trips with di�erent processing times for
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Fig. 1: Example of the DDSP-S
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each order, and assignment and sequencing decisions at storage places. Figure 1b shows
the trip-based graph for one existing vehicle, where the nodes represent seven trips and
dummy start and end depots for the tour. Since every node has a trip-induced time window
and products cannot be fetched before being stored, the arcs indicate feasible sequences.

Based on the trip-based graph representation, we present a mixed-integer program-
ming (MIP) formulation for the direct delivery scheduling problem with intermediate storage

(DDSP-S), which can be classi�ed as NP-hard (see Emde and Zehtabian (2019)). A com-
putational study using a general MIP solver yields methodological and managerial insights
as well as conclusions on promising future research directions.

2 Mathematical Formulation

In the DDSP-S, a set of trips i ∈ I and a set of orders o ∈ O are de�ned, where a subset
I(o) of e�ective trips exists for each order. For each trip, a time window [ai, bi] is derived
from ready times of production orders and due dates of customer orders, and a processing
time pi summarizes handling and traveling activities. In case two trips i and j refer to the
same product being stored and fetched, the pair (i, j) is part of the set of related trip pairs
R. The trip-based graph is set up with node set I ∪ {0, 0′}, as indicated in Figure 1b, and
arc set A containing feasible physical route arcs between pairs of trips i and j, and dummy
start arcs (0, i) and end arcs (j, 0′) for each vehicle's tour. Physical route arcs are weighted
by their travel time ti,j > 0, while dummy arcs feature ti,j = 0.

All orders must be satis�ed by using a given number of vehicles K and a set of storage
places l ∈ L. The goal is to �nd a sequence of trips i with starting times Ti ≥ 0 for each
vehicle so that all orders are satis�ed and the total travel and processing time is minimized.
In Figure 1b, the black arcs indicate a feasible tour for the case K = 1 and | L |= 1, and
Figure 1c shows the resulting schedule of transport and storage activities in a Gantt Chart.

In the mathematical formulation, sequences of trips are represented by binary decision
variables xi,j taking a value of 1, if trip i is performed directly before trip j by the same
vehicle, and 0 else. Pairs of fetching trips (from L to S) that are related to di�erent customer
orders but the same storage place are summarized in the set of competing trips C. In case
both trips of a pair are selected, and thus, products of di�erent orders are stored at the
same storage place, the binary variable yi,j determines a proper sequence of the fetching
trips. yi,j = 1 indicates that the product related to trip i precedes the product related to
trip j at the storage place. In line with the results of Lange and Werner (2018) for a job
shop problem, preliminary tests indicate that this type of sequencing variables is favorable
against other modeling approaches when applying a general MIP solver. The DDSP-S can
be described as follows:

min
∑

(i,j)∈A
ti,j · xi,j +

∑

(i,j)∈A:j ̸=0′

pj · xi,j (1)

s.t.
∑

(i,j)∈δ+(0)

xi,j ≤ K (2)

∑

(i,j)∈δ+(i)

xi,j −
∑

(j,i)∈δ−(i)

xj,i = 0 ∀ i ∈ I (3)

∑

j∈I(o)

∑

(i,j)∈δ−(j)

xi,j = 1 ∀ o ∈ O (4)

∑

(k,i)∈δ−(i)

xk,i −
∑

(k,j)∈δ−(j)

xk,j = 0 ∀ (i, j) ∈ R (5)
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Ti + pi + ti,j +M(xi,j − 1) ≤ Tj ∀ (i, j) ∈ A : i ̸= 0, j ̸= 0′ (6)

Ti + pi + tstore ≤ Tj ∀ (i, j) ∈ R (7)

ai ≤ Ti ≤ bi ∀ i ∈ I (8)
∑

(k,i)∈δ−(i)

xk,i +
∑

(k,j)∈δ−(j)

xk,j ≤ yi,j + yj,i + 1 ∀ (i, j) ∈ C : i < j (9)

(
|Iout(l)| − 1

)
·

∑

(k,i)∈δ−(i)

xk,i ≥
∑

(i,j)∈C:i<j

(yi,j + yj,i) ∀ i ∈ Iout(l) : ∃ (i, j) ∈ C, l ∈ L

(10)

Ti − ps(j) +M(yi,j − 1) ≤ Ts(j) ∀ (i, j) ∈ C (11)

xi,j ∈ {0, 1} ∀ (i, j) ∈ A (12)

yi,j ∈ {0, 1} ∀ (i, j) ∈ C (13)

The objective function (1) minimizes the sum of the total inter-trip travel time of all
vehicles and the total processing time of all selected trips. Constraint (2) restricts the
number of vehicles, while �ow conservation Constraints (3) assure a proper construction of
the tours. Oder ful�llment is guaranteed by Constraints (4). Constraints (5) make sure that
both, store and fetch, are executed whenever a product is selected for storing. Constraints
(6) determine a feasible starting time sequence for trips operated by the same vehicle and
eliminate subtours. For all related store and fetch trips, Constraints (7) assure a proper
starting time sequence additionally accounting for the minimum reasonable storage time
tstore. The start time window for each trip is implemented by Constraints (8). Constraints
(9) guarantee a unique sequence for each two fetch trips competing for the same storage
place, i.e. (i, j) ∈ C, while Constraints (10) assure that no sequence is determined for fetch
trips not operated. Here, Iout(l) denotes the set of all fetch trips related to storage place l.
The starting time sequence of competing fetch trips is adjusted according to the sequencing
decision by Constraints (11), where s(j) describes the related store trip for a given fetch
trip j. Constraints (12) and (13) de�ne the domain of the corresponding decision variables.

3 Computational Study

Computational experiments are conducted on randomly generated instances with 50
and 100 orders based on a shop �oor layout as shown in Figure 1a. The planning horizon
covers six hours, and the waiting time limits are 15 and 60 min for P and S. The minimum
storage time tstore is set to 30 min. The production order ready times are uniformly dis-
tributed over the �rst 2 h of the planning horizon, while the customer order due dates are
spread over the remaining 4 h. The number of vehicles K and the number of storage places
|L| are varied in two parameter settings each. K is set to 10 for 50 orders and to 20 for 100
orders, while an increase by 30% is considered. |L| is varied between 5 and 6 for 50 orders
and between 7 and 8 for 100 orders. 5 instances are generated for each of the eight combi-
nations of parameter values. Preliminary tests have shown that such values avoid instance
infeasibility caused by unrealizable time restrictions, and insu�cient numbers of vehicles or
storage places. The solution method is implemented in Python 3.8. The academic version
of Gurobi 10.0 is used as a solver with 2.5% MIP gap tolerance. The numerical tests are
conducted on a standard laptop with 8 GB RAM and Intel Core i5 with 1.6 GHz.

Table 1 summarizes the results for all parameter settings, where an increased numbers
of vehicles and storage places is indicated by '+'. For both instance sizes, the average
number of nodes and arcs of the trip-based graph, the average runtime to optimality (in
seconds), and the average optimal objective function value (in minutes) are given.
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Table 1: Computational Results

50 Orders 100 Orders

Setting Nodes Arcs Time Obj Nodes Arcs Time Obj

K |L| 345.6 68,948.6 25.2 1848.0 945.2 518,646.0 949.1 3,692.8
K+ |L| 354.8 72,780.0 30.0 1780.6 930.4 501,972.4 475.7 3,570.8
K |L|+ 391.8 88,063.6 28.2 1832.4 1058.0 655,852.8 626.0 3,689.2
K+ |L|+ 395.0 89,922.0 28.5 1770.0 1014.0 597,085.6 429.5 3,556.0

Since the number of vehicles is only used as a parameter in Constraint (2) of the model,
it has no e�ect on the size of the trip-based graph. In contrast, a higher number of storage
places leads to more trips and increases the number of nodes and arcs. However, this does
not lead to a systematic increase in runtimes. For the smaller instances, no signi�cant
di�erence in runtime among instances with di�erent parameter settings can be observed.
For larger instances, the planning �exibility gained a higher number of vehicles and storage
places even decreases the average runtimes, while changes in the number of vehicles show
a higher e�ect. Regarding the solving behavior, it should be noted that the root LP bound
di�ers by at most 2.5% from the optimal objective function value for all instances, and the
optimal solution is always the �rst feasible solution found.

From a managerial perspective, it can be seen that additional storage spaces do not lead
to a signi�cant reduction in the total travel and processing times of the vehicles, while a
larger �eet decreases the objective function value. However, note that �xed costs of vehicles
and congestion e�ects are not considered here. Regarding the applicability of the model
and a general solver in practice, the average runtimes of less than 30 s for smaller instances
might be appropriate for planning on the operational level, while the average runtimes of
more than 10 min for instances with 100 orders are not reasonable.

4 Conclusion

The DDSP-S can be described by a MIP formulation based on a trip-based graph. First
numerical results applying a general MIP solver indicate that computation times need to be
reduced for larger instances and practical applications, while increasing planning �exibility
by adding vehicles and storage places seems to work in favor of this. In our ongoing work,
we conduct a broader analysis on e�ects of instance parameters to gain deeper method-
ological and managerial insights. In the future, extending the problem to �t make-to-stock
environments with long-term storage options and multiple orders with the same product
seems as interesting and relevant as developing construction and improvement heuristics
to meet practical requirements on operational planning.
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1 Introduction

Various methodologies exist in product development. Certain methodologies may be
better suited for specific types of projects compared to others, as there is no univer-
sal approach that applies to all projects. When managing a New Product Development
(NPD) project, a crucial strategic decision revolves around selecting the appropriate devel-
opment methodology for the team to adhere to. This choice carries significant implications;
its impacting resource requirements, the quality of the deliverables, the overall duration
of the project, and even the project scope. The selection of a methodology for the de-
velopment team is heavily influenced by the organization’s culture and the team’s past
experiences. Consequently, the chosen methodology can also determine the specific team
that will be assigned to the project. It is challenging to accurately forecast the impact
of the development methodologies on project duration, since there is a lack of scientific
methods or dedicated tools to facilitate such decision-making (Andrei et. al. 2019). The
emergence of agile methodologies can be attributed to the absence of a reliable method for
accurately estimating product development duration and scope. Agile approaches (Agile
Manifesto 2001) diverge from the traditional mindset of predicting strict deadlines and
instead advocate for initiating the development process without extensive upfront plan-
ning or knowledge of the eventual outcomes. However, despite this flexibility, managers
and organizations still require some level of predictability to construct their organizational
roadmap, allocate budgets and resources, plan for growth, and more. This demand for pre-
dictability presents a challenge for those implementing agile practices within organizations
(VersionOne 2019, Vijayasarathy and Turk 2008).

Accurately estimating project durations is highly challenging task, and existing popular
models like CPM (Critical Path Method) and PERT (Program Evaluation and Review
Technique) often fall short in providing reliable estimation capabilities for project duration.
These models have a fundamental weakness in that they do not adequately consider the
specific product development methodology employed, the uncertainties associated with task
durations, resource availability, and scope changes, which are prevalent in many projects
(Lishner and Shtub 2022).

Several studies have focused on exploring the relationship between the strategy and
methodologies of NPD management and their impact on the project’s outcome (Joslin
and Müller 2015, Papke-Shields and Boyer-Wright 2017, Ciric et. al. 2021, Ahmed et.
al. 2022, Joslin and Müller 2016, Ika and Pinto 2022). However, most of these studies
have primarily relied on theoretical constructs rather than real-world project data. As a
consequence, the existing models for selecting development methodologies and strategies
suffer from poor validation based on empirical evidence. The current limitations of avail-
able tools, impede the understanding of how various product development methodologies
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impact project duration. This understanding is crucial for formulating an effective project
management strategy.

This paper addresses a simulation model designed to test various product development
strategies. The research methodology focuses on enhancing a validated model of the project
life cycle, adapting and updating it to align with advanced development methodologies.
Subsequently, a verification and validation process were conducted using data from real
projects.

By employing this model, it becomes possible to comprehend the anticipated effects of
different strategies on project timelines. Project managers can utilize this tool to determine
the most effective strategy for executing a specific project, gaining a more comprehensive
understanding of the tradeoffs associated with different methodologies.

2 Model Description

The proposed NPD model was developed using the Vensim PLE system dynamics
modeling tool. The model core is built upon the published model of Ford and Sterman
(1998) with an additional view of NPD project management studies in which characteristics
of NPD projects from different methodologies have been examined. Ford and Sterman based
their model on Pugh-Roberts’ well-known models and utilized objects from the Program
Management Modelling System (PMMS) model. Their model’s core is centered on the
“Rework Cycle” paradigm, which was first published by Cooper (1980). This paradigm
identifies undiscovered errors in the current work, which leads to more work in correcting
these errors. As more work is done, more errors are produced, leading to a recursive nature
of the project where rework generates more rework, resulting in the creation of more tasks
that need to be done to complete the project or a phase of the project. The following
improvements were implemented to the basic model:

2.1 Stochastic Variables Instead of Deterministic Variables

The original model uses deterministic variables for setting the rate of task execution,
for example: “average completion duration” and “resource constraint”. In the proposed
NPD model, more variables were added, such as: “no. of resources”, “resource show-up
probability”, “task mean duration”, and more. In addition, the deterministic variables such
as “average task duration” and more were replaced with stochastic variables according to
a distribution function allowing one to control the mean and the std. deviation of the
function. Moreover, the “resource constraint” is now relying on the “resource allocation”
and “show-up probability”, which is a random variable that represents the probability of
a resource being available to perform the tasks, since not all resource types can have an
assured 100% availability rate during the project life cycle.

2.2 Risk Management

Any NPD project has risks associated with it. There is a probability of risk events
happening that may affect the duration of some of the project’s tasks and cause a delay in
the project’s scheduling. The proposed NPD model includes a function of “Task Duration
Risks” which contains the average probability that tasks have of taking longer due to the
expected risk; this probability is being considered with each task duration calculation. The
Risk function impacts the duration of tasks, utilizing a Normal distribution with a standard
deviation determined by the project risk assessment. For each task associated with risks,
the probability of an extension in its duration is calculated. This probability is also linked
to the project’s progress and the number of tasks completed successfully. This is based on
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the assumption that as the project progresses, risks are typically reduced until the project
concludes and finally all risks are eliminated.

2.3 Dynamic Allocation of Resources

In the original model, the allocation of resources is fixed, meaning that if a resource is
not being used due to lack of tasks in the backlog, the resource is not exploited by other
tasks as may happen in reality. In the proposed NPD model, the option for automatic
resource allocation was added and it can be configured according to the project definition.
For example, if the “Tasks to Change Backlog” is empty, meaning there are no tasks to
change, the resources which were allocated to that task’s backlog can be reallocated to
help complete tasks from another backlog, such as the “Project Tasks Backlog”. The model
allows one to choose the automatic allocation rules.

2.4 Apply Different NPD Methodology

The original model did not consider the methodology employed in the project. In the
proposed model, one can choose among waterfall, agile, and hybrid methodologies. The
Gates mode (Waterfall) in the model permits work solely on the tasks available before
approval of the next gate. Approval of a gate occurs when all tasks associated with it are
completed, tested, and approved by the testing team.

The Iterations methodology (agile and spiral) is based on prior studies modeling agile
methodology (Van Oorschot et. al. 2009, Glaiel et. al. 2014). The Iterations mode utilizes
parameters like Sprint Length to determine the duration of each sprint. The overhead of
sprint planning is set by the Planning Length parameter, and another influential factor in
Iteration mode is Schedule Pressure (Van Oorschot et. al. 2009). This factor dynamically
alters the average productivity of the team as the end of the iteration approaches, impacting
both the quality of tasks performed and the likelihood of identifying errors.

Recognizing that many organizations don’t strictly adhere to agile or waterfall method-
ologies, the necessity to model a hybrid mode becomes evident. The hybrid mode retains
the gate options while enabling work on short or long iterations between gates. Parameters
such as gate types, length, and iteration scope, along with other relevant factors for both
Gates and Iterations modes, are available to tailor the model to suit the unique hybrid
approach of each project and organization.

3 Results and Conclusions

To validate the model, we conducted tests on two real multidisciplinary projects that
employed waterfall and agile methodologies. The results demonstrate alignment between
the model’s predictions and the actual project implementation. By employing stochastic
parameters and Monte Carlo simulation, the proposed model enables multiple simula-
tion runs, generating histograms of project results. This facilitates robustness testing of
strategies and provides insights into the probability of project completion within specific
timeframes. The model’s application of Monte Carlo simulation has potential for broader
utilization and future research.

Despite its utility, the model has limitations. The averaging approach enhances under-
standing of the project’s end result but may yield less accurate results during execution.
Additionally, project strategy cannot be detached from organizational and team capabil-
ities, meaning not all methodologies are universally applicable. Project managers must
consider the project’s limitations, team dynamics, and organizational context when select-
ing and adapting methodologies.
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To effectively utilize our model, we recommend a systematic workflow. First, select a
methodology based on the project’s constraints. Then, perform a Monte Carlo analysis,
setting boundaries for fixed parameters. Choose the best-performing strategy based on
the analysis results. Conduct sensitivity analysis to assess project robustness. If results
are unsatisfactory, adjust the project plan, strategy, or parameters until optimal results
are achieved. Utilize Monte Carlo simulation and statistical measurements to assess the
probability of achieving better project performance with each methodology, enhancing
decision-making.

In conclusion, the presented model provides a valuable framework for choosing and
evaluating NPD project strategies. Its ability to simulate scenarios and align with real-world
implementations demonstrates its effectiveness. However, it is essential to acknowledge the
limitations associated with the averaging assumption and contextual factors influencing
project strategy.

References

Agile Manifesto: Manifesto for Agile Software Development, 2001, [online] access 5 January 2024,
https://agilemanifesto.org/.

Ahmed, R., Shaheen, S. and Philbin, S. P., 2022, “The role of big data analytics and decision-
making in achieving project success", Journal of Engineering and Technology Management,
65, 101697.

Andrei, B. A., Casu-Pop, A. C., Gheorghe, S. C. and Boiangiu, C. A., 2019, “A study on using Wa-
terfall and Agile methods in software project management", Journal of Information Systems
and Operations Management, 125-135.

Cooper, K. G., 1980, “Naval ship production: A claim settled and a framework built", Interfaces,
20-36.

Ciric, D., Delic, M., Lalic, B., Gracanin, D. and Lolic, T., 2021, “Exploring the link between
project management approach and project success dimensions: A structural model approach",
Advances in Production Engineering and Management, 16(1).

Ford, D. N., Sterman, J. D., 1998, “Dynamic modeling of product development processes", System
Dynamics Review: The Journal of the System Dynamics Society, 14(1), 31-68.

Glaiel, F. S., Moulton, A. and Madnick, S. E. , 2014, “Agile project dynamics: A system dynamics
investigation of agile software development methods."

Ika, L. A., Pinto, J. K., 2022, “The re-meaning of project success: Updating and recalibrating for a
modern project management", International Journal of Project Management, 40(7), 835-848.

Joslin, R., Müller, R., 2015, “Relationships between a project management methodology and
project success in different project governance contexts", International Journal of Project
Management, 33(6), 1377-1392.

Joslin, R., Müller, R., 2016, “The relationship between project governance and project success",
International Journal of Project Management, 34(4), 613-626.

Lishner, I., Shtub, A., 2022, “Using an artificial neural network for improving the prediction of
project duration", Mathematics, 10(22), 4189.

Papke-Shields, K. E., Boyer-Wright, K. M., “Strategic planning characteristics applied to project
management", 2017 International Journal of Project Management, 35(2), 169-179.

Summers, G. J., Scherpereel, C. M., “Flawed decision models and flexibility in product develop-
ment", 2023 Journal of Engineering and Technology Management, 67, 101728.

Tignor, W., 2009, “Agile ProjecProc.", Proc. Int’l Conf. of the System Dynamics Society.
Van Oorschot, K. E., Sengupta, K. and van Wassenhove, L., 2009, “Dynamics of Agile software

development", Proc. International Conf. of the System Dynamics Society.
VersionOne, 2019, “13th annual state of Agile report", retrieved from:

https://www.stateofAgile.com/#ufh-i-521251909-13th-annual-state-of-Agile-report/473508
Vijayasarathy, L. E. O. R., Turk, D., 2002, “Agile software development: A survey of early

adopters", Journal of Information Technology Management, 19(2), 1-8.

Booklet of abstracts for the 19th International Workshop on Project Management and Scheduling, April 2�5, 2024

92



A local search tree heuristic approach for the stochastic
2-machine flow shop scheduling problem

Lei Liu1, Marcello Urgo2

1 Nottingham University Business School China, University of Nottingham, Ningbo, China
lei.liu@nottingham.edu.cn

2 Department of Mechanical Engineering, Politecnico di Milano, Milano, Italy
marcello.urgo@polimi.it

Keywords: Stochastic scheduling, Flow shop, Local search tree heuristic.

1 Introduction and problem statement

In the manufacturing sector, effective planning and scheduling are crucial due to the
sector’s inherent unpredictability. This unpredictability is characterised by incomplete in-
formation and a spectrum of unforeseen events, including variability in production times,
the emergence of urgent tasks such as expedited orders, rework demands, cancellation of
orders, breakdowns of machinery, and material deficits.

This paper delves into the intricacies of scheduling for remanufacturing operations or-
ganised in a two-machine permutation flow shop, wherein components are processed in
batches. One of the key challenges identified is the unpredictability of batch sizes, as some
parts may be deemed non-repairable and consequently need replacement with new ones.
Furthermore, the processing time required for these batches is also subject to uncertainty,
as the extent of damage to the parts dictates the duration of the repair process. Thus,
more severe damage leads to longer processing times. This paper presents a framework
that employs stochastic modelling of processing times of batches of remanufacturing parts,
represented by probability distributions, to facilitate more robust scheduling under uncer-
tainty. Liu and Urgo (2023a) addressed the same problem using an exact branch-and-bound
algorithm, while Liu and Urgo (2023b) tackled the revised version of the problem employing
both exact method and two heuristic approaches, specifically the Iterated Greedy algorithm
and the NEH heuristic, which have been recognised as the most promising heuristics for
deterministic flow shop scheduling problems.

The described problem can be modelled through a stochastic two-machine permutation
flow shop scheduling problem. A set of jobs N , representing batches of blades, must be
processed on two machines, M1 and M2 in sequence. The sequence of the jobs on the two
machines is the same. Phase-type distributions are used to model stochastic processing
times due to their capability to approximate general distributions. The objective function
under consideration seeks to minimise the Value-at-Risk (VaR) of the makespan, thereby
aiming to derive a robust scheduling solution. Specifically, the proposed schedule is designed
to ensure that the likelihood of the makespan exceeding the VaR is confined to a predefined
risk level, denoted as α, which reflects the decision-maker’s risk aversion. This approach
guarantees that the probability of the makespan surpassing the VaR threshold is no greater
than 1 − α, thus aligning the solution with the decision-maker’s specified level of risk
tolerance.

2 Local search tree approach

In this paper, we proposed a local tree search approach with a two-stage procedure
(Della Croce et. al. 2014) for the described stochastic two-machine flow shop scheduling
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problem: a first heuristic procedure is applied to the problem for generating a starting
solution, and then a post-processing procedure is applied exploiting of a branch-and-bound
analysis and a rolling horizon local search procedure.

The initial schedule can be obtained by arranging all the jobs according to the decreasing
order of ( 1

E(j1)
- 1

E(j2)
) with E(j1) and E(j2) being the expected value of the processing

times of job j on machines 1 and 2 respectively (Liu and Urgo 2023a).
For the second-stage procedure, a rolling horizon approach together with a window

reoptimisation problem is exploited. A window size parameter h is set, and then, grounding
on the first-stage heuristic schedule xini, the first h jobs will be sequenced as a subschedule
xs0. Hence, a branch-and-bound algorithm (Liu and Urgo 2023a) is exploited to find the
optimal solution for xs0, denoted as x∗

s0. Given that the position of the first job in x∗
s0 is

fixed and will be kept in the final solution, the next h jobs in the initial schedule xini are
considered. The branch-and-bound approach is used to identify the optimal sequence for
these jobs, generating a new subschedule xs1. Hence, the first one of these will be fixed,
and a new subproblem with h jobs will be considered until a first-stage heuristic schedule
is reached.

The outline of the proposed Local search tree algorithm is provided in Algorithm 1,
and an example instance with 7 jobs and size parameter equals to 4, is presented in Fig. 1.

Algorithm 1: Local search tree algorithm
Input: initial schedule xini, size h, final schedule x∗ = ∅, i=0
Step 1: Choose the first h jobs of xini and taken as subschedule xs0.
Step 2: The branch-and-bound algorithm is exploited to find the optimal solution of xsi,
say x∗

si; i = i+ 1.
Step 3: Put the first location job k of x∗

si into x∗.
Step 4: Pop out the first location job k of x∗

si, and take the h+ i job of xini and put it
into the last location of x∗

si, a new subschedule with h jobs is generated.
Step 5: Run step 2 and step 3, until the last job of x1 is put into the final schedule,
append the last optimised subschedule into the final schedule x∗.

Fig. 1. Example of Local search tree algorithm
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The branch-and-bound algorithm used for the window re-optimisation is based on a
Markov activity network model, as proposed in(Liu and Urgo 2023a). Both full and partial
schedules are formalised as an AoA network, supporting the definition of a continuous-
time Markov chain (Fig. 2) modelling the processing of the jobs, whose time to absorption
corresponds to the makespan of the schedule. This enables the calculation of the VaR by
Eq. 1 where β and T are the vector and matrix of the CTMC, α is the considered risk
level, and ζ is the V aRα value to be estimated.

1− α = 1− βeζ∗T1 (1)

Fig. 2. AoA of full and partial schedule and CTMC figure

3 Numerical experiments

A set of test instances has been generated considering n = 10, 20, 30 and 50 jobs.
Processing times are modelled through phase-type distributions, randomly generated by
the BuTools library by providing values for the mean and number of phases. The mean
value of the random processing times is adapted from the deterministic processing times of
the Taillard dataset, specifically from the 50-job and 5-machine instances, by considering
two machines only. The number of phases is randomly sampled between 1 and 4, and
risk level α = 20% is considered for the optimisation. The window size parameter, h, is
selected to be 6 to strike a trade-off, ensuring that the branch-and-bound algorithm can be
executed in a timely manner for the subschedule of this size, while still being large enough
to optimise the subschedule effectively.

The experimental outcomes are presented in Table 1 and Fig. 3, which illustrate the ef-
ficacy of the local search tree heuristic algorithm. These results highlight the enhancements
made from the initial solution, the discrepancy from the optimal solution for instances with
10 and 20 jobs (or the global lower bound for instances with 30 and 50 jobs), and the CPU
time taken to arrive at the solution, respectively.

Grounding on the experiments, the proposed algorithm is able to find the final schedule
in about one minute. With respect to the performance, the local search tree heuristic can
improve the initial heuristic solution by an average of 7.7% and with a gap of 2.2% towards
the optimal solution or global lower bound.

Numerical experiments indicate that the proposed local search tree heuristic algorithm
is highly effective in solving the stochastic two-machine flow shop scheduling problem.
Critical factors contributing to the success of this algorithm include both the window size
parameter, denoted as (h), and the quality of the initial schedule. Future research could
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profitably focus on the optimal selection of the parameter (h) and the development of
initial heuristic schedules. Moreover, the integration of advanced local search techniques
may further improve the solution quality of the proposed approach. Additionally, the pro-
posed method provides a flexible framework that could be adapted to various stochastic
scheduling problems, e.g.,m-machine flow shop scheduling problem, representing a valuable
direction for future research.

Table 1. Results

Job No. ∆% vs initial ∆% vs optimal/GLB solution time
Mean Min Max Mean Min Max Mean Min Max

10 12.4 0.29 27.3 0.4 0 3.0 3.4 3 5
20 6.5 0 13.5 2.1 0 8.6 41.8 18 90
30 7.2 2.0 14.5 3.1 0.9 5.7 92.1 32 201
50 4.8 2.9 8.3 3.2 1.0 6.6 174.6 78 307
All 7.7 0 27.3 2.2 0 8.6 77.9 3 307

Fig. 3. Performance of local search tree heuristic algorithm
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1 Introduction

In today’s competitive environment with short product life cycles and high customer
expectations, working in projects is a predominant form of work organization. As part of
the planning process, which is carried out before project realization, individual activities
of a project are scheduled according to an objective function and the available renewable
resources (e.g., employees) are used efficiently to carry out the activities.

We consider projects represented as activity-on-node networks N = (V,E). Node set
V = {0, 1, . . . , n, n+ 1} consists of real activities i = 1, . . . , n and two fictitious activities,
0 and n+ 1, which represent the start and completion of the project. Set E contains arcs
for all precedence constraints between activities. If the goal is to minimize the project du-
ration, then the problem can be formulated as a deterministic resource-constrained project
scheduling problem (RCPSP). This problem assume a constant duration di ≥ 0 of the
activities i ∈ V and a constant resource requirement rik ≥ 0 of resources k ∈ K during
the execution of activities; K is the set of all renewable resources. The RCPSP ignores
uncertainties that lie in the future. In careful and structured planning, however, it should
be assumed that uncertainties will arise, e.g., in the duration of activities or in the num-
ber of resources required over time. Otherwise, there may be considerable disruptions in
the schedule and the solutions generated may be too restrictive for implementation and
unsuitable for many practical applications (Hartmann and Briskorn 2010).

In order to integrate these uncertainties, there are also approaches in the literature.
These include the RCPSP with stochastic aspects (in particular with stochastic activity
durations) and the RCPSP with flexible resource allocation over time or with flexible
resource profiles. In the latter case, the number of employees can be varied during the
execution, thus leveraging flexibility potentials. As far as we know, there is no approach
that offers both advantages of stochastic activity durations and those of flexible resource
profiles, respectively. This leads to a relevant research gap, which is addressed in this
contribution. Based on a chance-constrained formulation, a mathematical model for flexible
and stochastic project scheduling problems is presented and evaluated in a performance
analysis. Moreover, a suitable serial schedule generation scheme is introduced.

2 Stochastic and Flexible Resource-Constrained Project Scheduling

The problem under consideration is a stochastic RCPSP with flexible resource profiles
(abbreviation: FSRCPSP). Therefore, it represents a combination of the stochastic RCPSP
(SRCPSP) and the flexible RCPSP (FRCPSP). We developed the FSRCPSP model based
on the SRCPSP by Möhring et. al. (1984) and the FRCPSP by Kolisch et. al. (2003). The
following characteristics are important for the model formulation in Section 3:
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– The SRCPSP takes into account that the durations of the activities are defined as
random variables d = (d0, ...,dn+1) ∼ P; P is a chosen probability distribution. The
objective is to minimize the expected project duration (Möhring et. al. 1984).

– The FRCPSP considers a deterministic total workload for individual activities, which
can, e. g., be specified in person hours. The workload wik ≥ 0 of activity i ∈ V for
resource k ∈ K can be distributed over time with varying resource requirements. This
results in a different resource allocation from period to period and in decision-relevant
activity durations that depend on the resource allocation (Naber and Kolisch 2014).

In what follows, the FSRCPSP is specified by a stochastic workload defined as a vector w
of random variables. Moreover, the formulation requires a discretization of the time horizon
T = {0, . . . , |T |}. Then, the workload results from the sum of resource requirements rikt
over all periods t = 0, . . . , |T |−1 in the planning horizon. The flexible rikt can not be chosen
arbitrarily, but must be adjusted within the predefined limits [rik, rik] (Schramme 2014).

3 Solution Methodology and Mathematical Model Formulation

The FSRCPSP can be solved in two different ways. A first approach is to find a policy
(i. e., a set of decision rules) that dynamically prescribes the start of certain activities at
certain decision times (Ballestín and Leus 2009). Alternatively, a two-stage procedure can
be used (Davari and Demeulemeester 2019). The first stage provides the generation of a
proactive, robust baseline schedule SB that is protected as much as possible against any
uncertainties that may arise. In the second stage, the aim is to define a reactive strategy
which is always used if a disruption occurs during project execution. The two schedules
(proactive: SB and reactive: SR) are combined by using a robustness measure; e. g., a
confidence level (CL). The CL measures the probability that each activity starts exactly
at the start time of the equivalent activity in SB (Lamas and Demeulemeester 2016).

Consequently, the problem of determining a baseline schedule SB with a minimum
project duration (Cmax) arises in such a way that all constraints of the FSRCPSP are ful-
filled and a specified CL is satisfied. This problem can be formulated as a chance-constrained
(CC) model. For this purpose, we choose the mixed-integer programming (MIP) models
inspired by Möhring et. al. (1984) and Kolisch et. al. (2003) as a basis and integrate the
uncertainties with chance-constraints such as Lamas and Demeulemeester (2016) for the
SRCPSP. For the formulation, we introduce binary decision variables xit ∈ {0, 1} for ac-
tivities i ∈ V and time periods t ∈ T , which take the value 1 if i is started at time t.
Moreover, let (1 − α) be the CL set in advance by the project managers. The precedence
and the resource constraints are adjusted and formulated as follows:

(1− α) ≤ Pr
(∑

t∈T

t xjt −
∑

t∈T

t xit ≥ di, ∀⟨i, j⟩ ∈ E
)

(1)

(1− α) ≤ Pr
(∑

i∈V

rikt ≤ Rkt, ∀k ∈ K, t = 0, . . . , |T | − 1

)
(2)

Constraints (1) and (2) ensure that a solution of the CC-FSRCPSP is only feasible if the
probability Pr(∗) of satisfying all precedence constraints and resource capacities Rkt for
resources k ∈ K and each point in time t ∈ T are greater than or equal to the defined CL.

Since the resulting MIP-model for determining the baseline schedule SB can not be
solved in a direct way, we have to reformulate the CC-FSRCPSP by using sample average
approximation (SAA). Here, the uncertainty is considered by looking at scenarios π ∈ S
in which wik is drawn according to the underlying probability distribution. Furthermore,
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let rπikt ≥ 0 and dπi ≥ 0 be real-valued decision variables for the resource requirements and
the activity durations, which are dependent on the scenario π. With W i being the set of
all possible start times of activity i ∈ V , we obtain the following constraints:

∑

t∈W j

txjt −
∑

t∈W i

txit ≥ dπi − (M · ωπ) ∀⟨i, j⟩ ∈ E, π ∈ S (3)

∑

i∈V

rπikt − (M · νπ) ≤ Rkt ∀k ∈ K, t ∈ T, π ∈ S (4)

ωπ + νπ ≤ 2 · ρπ ∀π ∈ S (5)
∑

π∈S
ρπ ≤ |S| · ε (6)

Precedence constraints are ensured with Conditions (3). The binary decision variable
ωπ ∈ {0, 1} receives the value 1 if any precedence condition is violated in the corresponding
scenario π ∈ S. Conditions (4) belong to the resource constraints and the decision variables
νπ check whether the solution is feasible under scenario π with regard to the resource
capacities. If more resource units are allocated to a scenario, νπ ∈ {0, 1} takes the value 1.
Inequalities (5) and (6) count the number of violations of scenarios. As soon as the sum
of binary decision variables ρπ ∈ {0, 1} is greater than (|S| · ϵ), the observed solution is
infeasible. The resulting SAA-FSRCPSP enables the minimization of the project duration
Cmax over all scenarios π ∈ S under consideration of a confidence level (1− ϵ).

Since the FSRCPSP is a generalization of the RCPSP, it is NP-hard. Therefore, the use
of exact solution methods is only possible for small instances with a low number of activities
and scenarios. In order to solve larger problem instances, we have implemented a serial
schedule generation scheme (SSGS) in the programming language C++ (see Section 4).

4 Serial Schedule Generation Scheme for the SAA-FSRCPSP

Starting from a sub-schedule that only contains activity 0, the other activities are
scheduled one after the other in our SSGS. In each iteration, the set of activities that can
be scheduled (the eligible set E) is determined on the basis of the underlying network N .

An activity j with the highest priority is selected from set E according to a priority
rule, e.g., earliest start time first (EST-rule). Then, the start time Sj for activity j has
to be identified. To do this, we first calculate the earliest start time ES j of activity j by
considering the predecessor activities i ∈ Pred(j). In particular, the calculation principle
ES j = maxi∈Pred(j),π∈S(Si + dπi ) applies here. Consequently, all durations dπi of the dif-
ferent scenarios π ∈ S are explicitly included. In order to specify the durations dπi , the
corresponding workloads wπ

ik are distributed over the time axis (e. g., evenly or taking into
account the maximum available residual capacity) within the limits rik and rik. Once the
ES j is calculated, the second step is to determine the time t∗ ≥ ES j at which a resource-
feasible scheduling of j can take place. For this purpose, we do not select the scenario with
the maximum workload, but we select a scenario π ∈ S with the corresponding workload
wπ

jk for activity j. Accordingly, a roulette wheel selection is used, which is defined by the
probability density of w for each activity. After selecting a workload, it is distributed over
the time axis starting from ES j within the limits [rik, rik]. The earliest point in time at
which a feasible distribution of wπ

ik is possible is t∗ ≥ ES j . We set Sj = t∗.
When all activities are scheduled, a vector of start times S = (S0, . . . , Sn+1) is created.

The feasibility of this solution must be checked for all scenarios with regard to CL. As soon
as a scenario is not able to fulfill the specified start times, a conflict arises. If the number
of conflicts defined in Constraints (6) is not exceeded, the schedule is a proactive, robust
and feasible schedule with regard to the predefined confidence level (1− ϵ).
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5 Computational Results and Outlook

Based on the PSPLIB library provided by Kolisch and Sprecher (1996), we created 100
instances with n = {10, 30} real activities. Thereby, flexible and stochastic characteristics
were added to the instances, e. g., a set S of scenarios was generated using the beta(2,5)
distribution from Lamas and Demeulemeester (2016) and resource limits [rik, rik] were in-
cluded for each activity. In the performance analysis, the quality of the SSGS was examined
in comparison to optimal solutions achieved with GAMS 39.3 and CPLEX 22.1. Table 1
shows the average objective function values ∅Cmax (i. e., the project durations) of the in-
stances, the number of optimally and feasibly solved instances, the average runtimes ∅tcpn

of optimally solved instances as well as the average gap for all feasibly solved instances.
Table 1. Computational results (ϵ = 0.0)

∅Cmax # optimal ∅tcpn # feasible ∅GAP

Results achieved by GAMS and CPLEX

n = 10 23.36 50 115.82 s. 0 0 %
n = 30 70.62 47 3660.52 s. 3 3.66%

Results achieved by SSGS

n = 10 25.18 19 1.43 s. 31 6.70 %
n = 30 72.66 13 2.12 s. 37 7.04 %

The results obtained show that the SSGS provides a good approximation of the aver-
age project duration. In addition, significantly shorter run times are recorded. The SSGS
reliably provides a solution for instances with 30 activities in approximately 2 seconds. In
order to improve the solution quality of the SSGS, the next step is to integrate it into a
suitable metaheuristic. A population-based method is planned in the future.
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1 Introduction

The problem of scheduling projects with limited resources has been extensively stud-
ied in the literature and is referred to as the resource-constrained project scheduling
problem (RCPSP). The RCPSP involves organizing activities while considering both re-
source availability and activity dependencies to minimize the overall project duration. This
problem is known to be NP-hard (Blazewicz et. al. 1983). Although the majority of re-
search studies typically assume a predetermined and entirely known project structure, after
consulting with industry professionals, researchers noted that intricate projects often in-
volve interchangeable work packages rather than a fixed project network (Servranckx and
Vanhoucke 2019). In this research, an extention of the basic RCPSP with alternatives is
studied. The RCPSP with alternative subgraphs (RCPSP-AS) consists of two subproblems
of selection and scheduling. In the selection subproblem, among several alternatives exist-
ing in a subgraph, one alternative is selected and in the scheduling subproblem, the selected
alternative activities together with fixed activities are scheduled using schedule generation
schemes (SGS). Servranckx and Vanhoucke (2019) found the first benchmark solution for
the RCPSP-AS employing a tabu search algorithm. Constructive heuristics including the
RCPSP-AS selection and scheduling priority rules were developed by Nekoueian et. al.
(2023). Moreover, Servranckx et. al. (2022) discuss extensions of the basic RCPSP-AS.
Another extension of the RCPSP with flexible project structure can be found in Kellen-
brink and Helber (2015) where choosing optional activities determines the execution of
other activities and/or causes other choices. In the RCPSP-AS, the project network is en-
tirely reconstructed to obtain an alternative project network, while the project networks to
solve the RCPSP-PS are directly obtained from RCPSP studies. Moreover, the RCPSP-PS
allows logical dependencies between activities that are not connected by a direct prece-
dence relation, where the logical relations always align with the precedence relations in the
RCPSP-AS.

Similar to the RCPSP, the RCPSP-AS is an NP-hard problem and hence finding an
optimal solution for this problem is challenging. Consequently, metaheuristic methods are
ineteresting since they provide near optimal solutions and frequently surpass heuristic
methods. Among metaheuristics, the genetic algorithm (GA) has proven to be exceptionally
effective in addressing scheduling problems (Hartmann and Briskor 2022). A GA is inspired
by the natural evolution of populations and is a versatile search algorithm used to generate
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solutions for intricate problems and was first developed by Holland (1975). In this study,
new variants of GA are proposed for the RCPSP-AS taking into account problem specific
local searches for the selection subproblem.

2 Problem description

In this section, we briefly explain the RCPSP-AS specifications originally developed by
Servranckx and Vanhoucke (2019). We present the RCPSP-AS project networks with a di-
rected acyclic graph and the activity-on-the-node (AoN) project network, where activities
should be scheduled using renewable resources with known and constant availability over
project makespan. Activities in the RCPSP-AS are divided into two subsets of fixed and
alternative activities. The fixed activities are essential for project completion, and alterna-
tive activities are optional and should be selected. When scheduling activities, precedence
and resource constraints are satisfied and activities are scheduled in a way that the project
makespan is minimised. As stated, there exists several alternative subgraphs in the RCPSP-
AS project which include multiple alternatives. A principal activity is a fixed activity that
causes the decision of selecting one alternative among several alternatives in a subgraph
and a terminal activity terminates the decision and is placed at the end of an alternative
subgraph. An alternative activity that is the direct successor of a principal activity is a
branching activity. An alternative subgraph is a subgraph consisting of multiple branching
activities and alternative activities that originate from the same principal activity and end
with the same terminal activity. A subset of activities in the alternative subgraph that con-
sists of the branching activity as well as all its transitive successors is called an alternative
branch. An alternative path is a subset that consists of the set of fixed activities and the
logical feasible set of selected alternative activities.

There exist two relations between alternative subgraphs in the RCPSP-AS project
network. A nested alternative subgraph is an alternative subgraph that is embeded in
another alternative subgraph. It might be that an alternative for one work package is
related or linked to an alternative of the same or a different work package. If an alternative
with a link to another alternative activities is selected, the linked alternative activities
should also be selected.

These defenitions are applied to an illustrative project example and can be found in the
legend of Figure 1. In Figure 1, activity S and E are dummy start and end activities and
the project includes three alternative subgraphs that each includes two branching activities.
One possible alternative path is {S, 1, 2, 4, 9, 10, 12, E}. The set of principal activities is
{S, 1, 9} and the set of terminal activities is {4, 9, 12}. Alternative subgraph l=2 is nested
in alternative subgraph l=1 and there are links between activities 3 and 6 as well as activities
7 and 11. This means that if branching activity 1 is selected, a decision should be made
whether to select activity 2 or 3. If activity 3 is seleted then activity 6 and its successor
(activity 8) should be selected.

3 Methodology

Generally, a GA starts with the population initialisation and subsequently, new indi-
viduals are generated by crossover, mutation and selection over different generations until
a pre-determined stopping criterion is achieved. In this study, we develop and examine
the performance of different local searches for the selection subproblem resulting in three
versions of a GA for the RCPSP-AS.

Since the RCPSP-AS consists of two subproblems, we consider two activity lists for
the solution representation, i.e. one list for the selection subproblem and another list for
the scheduling subproblem. The selection list selects a branching activity, its successors
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Fig. 1. Project network with alternatives mentioned in Nekoueian et. al. (2023)

and linked activities based on the priority of branching activities while the scheduling list
provides the priority of activities for the serial scheduling generation scheme (SSGS).

We introduce two different learning-based local searches for the selection subproblem.
In order to identify the impact of learning on our GA, a no learning local search is proposed
and all the operators of the GA variants are considered to be the same except the local
search for the selection subproblem. These local searches are explained as follows:

No learning In this GA variant, a random local search for the selection subproblem is
implemented such that two branching activities are randomly chosen and swapped in
the selection list. Therefore, the selected branching activities change after employing
a no learning selection local search. This random local search does not include any
information from previous branch selections and hence it is called no learning.

Learning 1 and 2 Each branching activity has a known selection probability which is
changed throughout the evolutionary process of the GA. Specifically, the selection
probability of the selected branching activity will be increased, while the selection
probability of the non-selected branching activities will be decreased. This adjustment
is implemented in two different ways. Learning 1, starts with an equal probability of
selection for all the branching activities and one branch is selected randomly when
this local serach is implemented. Subsequently, the selection probability of branching
activity increases by a predefined value whereas for the other branches, the selection
probability decreases. In learning 2, the probability of selecting a branching activity
depends on the frequency of individuals in the GA populations that prioritise a spe-
cific branching activity. As the number of elite solutions in the population increases,
the selection likelihood of the branching activities that provide the minimum project
makespan increases. In summary, the distinction between learning 1 and learning 2 lies
in how the selection probability of branching activities is affected. In learning 1, this
probability changes by a predefined value while the changes in the probabilities are
determined by the individuals in the population in learning 2.

4 Results and experiments

The performance of newly developed GA variants are examined using a dataset includ-
ing 360 instances with different project properties provided by Servranckx and Vanhoucke
(2019). Table 1 shows the average project makespan of the GAs and significant difference
(two-sided p value in paired sample t-test) of the results when implementing learning in the
selection local search. From Table 1, it can be concluded that all the newly developed GAs
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outperform the existing constructive heuristic (CONH-2) proposed by Nekoueian et. al.
(2023). Moreover, the GA with learning 1 generally outperforms the GA with no learning
for the selection subproblem. We also see an improved average makespan when learning 2
was implemenetd on complex projects in our GA framework, however, the difference with
the no learning and learning 1 in general is not significant. In our extended experiments on
projects with different network complexities, we found that the no learning and learning 2
outperform learning 1 for complex projects.

Table 1. Comparison among developed methodologies for the RCPSP-AS

Research Methodology Avg. P value comapred to
makespan no learning learning 1 learning 2

This study GA no learning 93.54 - 0.03 0.27
GA learning 1 93.46 0.03 - 0.22
GA learning 2 93.51 0.27 0.22 -

Nekoueian et. al. (2023) CONH-2 94.08 < 0.001 < 0.001 < 0.001

5 Conclusion

In this study, we investigated new versions of a GA for the RCPSP-AS which is the
problem of selection and scheduling activities in work packages that can be executed in
alternative ways. We developed variants of a GA including and excluding learning and
tested the significant differences between the results of the GAs and the previously devel-
oped constructive heuristic (CONH-2) proposed by Nekoueian et. al. (2023). The results
show that all the GA variants outperform the existing CONH-2. Furthermore, based on the
results, learning 1 which includes gradual increase in the selection probability of branches
outperforms no learning and learning based on population.
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1 Introduction

Daily, air transportation grapples with various challenges, encompassing passenger and
aircraft service procedures, coordination of vehicles on the airport apron, and the delin-
eation of optimal flight trajectories. Despite the abrupt decline in boarded passengers dur-
ing the coronavirus pandemic, air travel appears to be regaining its former appeal. An area
of interest for us, closely tied to the density of aircraft in the airspace, is reducing the risk
of conflicts emerging at the tactical level (5 to 30 minutes before conflicts occur). A con-
flict is defined as a situation where two aircraft are within 5 nautical miles of each other.
While this problem has been extensively explored, numerous proposed solutions exhibit
limitations, as pointed out by Pelegrín & d’Ambrosio (2022). In our study, we present the
aircraft tactical deconfliction problem formulation as a quantum Hamiltonian and apply
the Quantum Approximate Optimization Algorithm (QAOA) (Farhi et al. 2014) to solve it.
Additionally, we conduct a comparative analysis of probabilities, circuit length and number
of solutions on two IBM physical quantum computers: the 127-qubit ibm_sherbrooke with
the Eagle processor and the latest 133-qubit ibm_torino with the Heron processor.

To date, only one paper explores the deconfliction using quantum computing (Stol-
lenwerk et al. 2019). However, this study addresses strategic deconfliction using departure
delays only and employs non-universal quantum annealing device. Our research builds upon
foundational articles that address the problem classically. In particular, we utilize the geo-
metrical interpretation to detect conflicts (Bilimoria 2000). Additionally, we limit potential
aircraft maneuvers to velocity and heading changes only, recognized for being more man-
ageable for human operators while leading to a negligible increase in fuel consumption
(Omer 2015). We benchmark our method on artificial instances proposed by Rey & Hijazi
(2017), which were subsequently scaled down to fit the current quantum computers in size.

2 Formulation

Given a set of n aircraft, for each of them we propose m different maneuvers, including
the option of no maneuver, i.e., maintaining the original trajectory. We define a set of
variables in an injective relation with the available qubits, |X| = R,

X = {xij : 1 < i ≤ n, 1 < j ≤ m, xij ∈ {0, 1}}. (1)

If the variable xij is assigned the value 0 it indicates that the aircraft i is not performing
maneuver j, whereas a value of 1 indicates the opposite. We assume that maneuvers for
an aircraft are disjoint, meaning no aircraft can perform two maneuvers simultaneously.
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Solving any combinatorial optimization problem involves defining an appropriate cost
function. In case of QAOA, the function needs to be represented as a quantum cost Hamilto-
nian, which is a linear operator that represents the total energy of a quantum system. Such
Hamiltonians can be constructed using Pauli matrices, I = ( 1 0

0 1 ), X = ( 0 1
1 0 ), Z =

(
1 0
0 −1

)
.

We write Zij to denote Z acting on a qubit that is mapped from a variable xij . Also, we
write ZijZi′j′ as a shorthand for a tensor product Zij ⊗ Zi′j′ .

We include two constraints into the cost Hamiltonian: a constraint ensuring that an
aircraft performs one and only one maneuver and a constraint ensuring that no conflict
occurs between two aircrafts. We can express the first condition by:

H1 =
n∑

i=1

I −
m∑

j=1


Hx(xij)

m∏

j′=1,j′ ̸=j

(Hnot(xij′)))


 , (2)

where Hx(xij) =
1
2 (I−Zij) specifies that the maneuver j is to be performed by aircraft

i, and Hnot(xij′) = 1
2 (I + Zij′) says that any other maneuver cannot be performed. We

sum over all possible maneuvers for all aircraft. Since QAOA is a minimization algorithm,
we need to negate the inner sum. Similarly, the second constraint can be described as:

H2 =
∑

i,j,i′,j′:CM(i,j,i′,j′)=1

Hand(xij , xi′j′). (3)

Here, CM represents a conflict matrix filled with potential pairwise conflicts calculated
geometrically. For any such conflict, we add the term Hand(xij , xi′j′) =

1
4I− 1

4 (Zij+Zi′j′−
ZijZi′j′) to count the conflicts. Having a feasible solution, this sum yields 0.

One could define an additional Hamiltonian Hopt =
∑n

i=1

∑m
j=1 wijHx(xij) responsible

for an optimization criterion with partial costs represented by the weights wij . We, however,
consider the decision version of the problem, therefore our final Hamiltonian is

Hc = H1 +H2. (4)

QAOA is a hybrid quantum-classical optimizaton algorithm that takes its origins from
quantum adiabatic evolution. Given R qubits, the algorithm alternately applies the cost
Hamiltonian Hc and the mixer Hamiltonian HM , typically composed of Pauli-X, to the
equal superposition state |+⟩⊗R state p times, p ∈ Z+. The role of Hc is to distinguish
our desired problem solution in phase, while HM aims to cancel out amplitudes of states
having different phases, increasing the probability of measuring the desired solution. This
is achieved by optimizing sequences of variational parameters −→γ and

−→
β using a classical

optimizer to minimize the expectation ⟨ψ|Hc|ψ⟩. The full quantum circuit looks as follows:

|ψp(
−→γ ,−→β )⟩ = e−iβpHM e−iγpHC . . . e−iβ1HM e−iγ1HC |+⟩⊗R. (5)

3 Experiments and Results

As mentioned earlier, the experiments were conducted on instances proposed by Rey &
Hijazi (2017), which underwent a reduction in size. Our focus was put on instances of the
Random Circle Problem (RCP), and as such, we denote an instance as RCP n×m where
there are n aircraft, each capable of executing m maneuvers.

Theoretically, a higher value of p (indicating a longer circuit) should yield better results.
However, two challenges arise. Firstly, longer circuits introduce more variational parame-
ters, intensifying the complexity of the optimization process. Secondly, current quantum
computers are susceptible to noise, and the cumulative impact of it significantly worsens
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Fig. 1: Probability of finding a conflict-free solution as a function of circuit length and in-
stance size. The upper plot shows results for the older ibm_sherbrooke quantum computer,
while the bottom one shows results for the new ibm_torino quantum computer.

the results. The presence of noise and imperfections also restricts us to using only a couple
of qubits, even when the quantum device offers over 100 of them. The initial set of exper-
iments, as illustrated in Figure 1, presents the probability of measuring a feasible solution
as a function of instance difficulty, circuit length, and quantum processor type. It is worth
noting that the probability is calculated based on multiple thousands of quantum circuit
sampling. Given that circuit sampling is computationally efficient, even a probability as
low as 0.001 for finding a feasible solution is considered successful for solving the instance.

It is evident that the probability of measuring a conflict-free solution decreases with
increasing instance difficulty. Notably, an increase in circuit length improves results on
ibm_sherbrooke for the RCP 3 × 2 instance. As more challenging instances require ad-
ditional quantum entanglements, the circuit must also become longer. Consequently, we
observe a breakpoint in the trend from p = 2 in the instances RCP 4× 3 and RCP 5× 3,
leading to a decrease in probability, aligning with our expectations.

The observed dependencies are also visible in the case of the ibm_torino quantum
computer, although to a lesser extent. The variability in results could stem from various
factors, including the influence of initial variational parameters or the inherent nature
of randomness of quantum computing. Further investigation is required to minimize the
observed variability. Despite the fact ibm_torino is considered to be a more powerful
machine compared to ibm_sherbrooke it is more apparent only in specific instances, such
as RCP 5 × 3 or RCP 5 × 4. Unfortunately, none of the quantum machines succeeded in
finding any correct solution for the RCP 5× 5 instance.

We also explored the correlation between the number of conflict-free solutions in the
instance, and the probability of measuring one. Instances with fewer potential solutions pose
increased challenges, not only due to their intrinsic complexity but also because they entail
a higher number of aircraft conflicts. Modeling these conflicts with a quantum computer
involves establishing error-prone entanglements between qubits, possibly leading to worse
results. The chart in Figure 2 validates our assumptions. For the examined instance, RCP
3× 2, there would be 23 = 8 feasible solutions if there were no conflicts. By introducing a
single conflict scenario, the probability of measuring the correct solution becomes 0.5. The
probability gradually decreases as more conflicts are added, reaching 0.03 with only one
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Fig. 2: Probability of finding a conflict-free solution as a function of number of feasible
solutions in an instance containing 3 aircraft capable of performing 2 maneuvers.

conflict-free scenario. Even the smallest error during circuit execution on noisy hardware
can lead to varied optimization processes, resulting in non-monotonic probability decrease.

4 Conclusions and future work

In this paper, we introduced the quantum Hamiltonian for tactical aircraft deconfliction
problem and showed how to leverage the two quantum phenomena — superposition and
entanglement — to address the exponential nature of this problem. We used two real
quantum computers solve well-known problem instances with varying circuit lengths of
the QAOA algorithm. Additionally, we investigated the relationship between the number
of solutions in an instance and the probability of measuring a conflict-free solution. Our
approach is versatile and can be readily improved by incorporating additional constraints
and optimization criteria. For instance, investigating the impact of our approach with the
introduction of additional weights to favor minimal changes to the original plan or to reduce
overall fuel consumption would be beneficial. We believe, that in the future our approach
will be used to solve real-world instances on large-scale fault-tolerant quantum computers.

This research was supported by Poznan Supercomputing and Networking Center (PSNC),
project no DOB-SZAFIR/01/B/023/01/2021 and partially funded by Poznan University
of Technology, project no 0311/SBAD/0734. The access to quantum devices was possible
through IBM Quantum Innovation Center established at PSNC.
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1 Introduction

We consider a sequencing problem in which n jobs have to be scheduled on a single
machine with no idle times. Each job j is defined by a processing time pj and by a single
cost function fj . The objective is to minimize the total cost

∑
j fj(Cj), where Cj is the

completion time of job j. This problem is denoted by 1|no-idle|∑j fj using Graham’s
notation (Graham et al. 1979).

The 1|no-idle|∑j fj problem generalizes all single-machine problems with regular ob-
jectives and deadlines. Indeed, semi-active schedules form a dominant set for regular ob-
jectives, and semi-active schedules generate no idle times in the absence of release times.
Deadlines are taken into account by setting an infinite cost fj(Cj) for any deadline vio-
lation (Cj > d̃j). On a theoretical point of view, the 1|no-idle|∑j fj problem is strongly
NP-hard, because several of its sub-problems are strongly NP-hard, as, for example, the
1|d̃j |

∑
wjCj problem (Lenstra et al. 1977).

We now define the notion of permutation constraint relaxation. From now on, the
original 1|no-idle|∑j fj problem is refered to as the non-relaxed or strict problem, and a
plain schedule, solution of the original problem, is refered to as a strict schedule. Obviously,
in a strict schedule, each job must appear exactly once. So, a strict schedule is a permutation
of (1, . . . , n). We relax this constraint and consider relaxed schedules in which each job may
be absent or may appear one or several times.

The main advantage of a relaxed problem is to be solved in pseudo-polynomial time
and space using dynamic programming. To solve a strict problem, a traditional dynamic
programming scheme needs to consider the set of already scheduled jobs in each state.
This implies an exponential number of states (at least one per job subset), and thus an
exponential worst-case time and space complexity. On the opposite, to solve a relaxed
problem, the same dynamic programming scheme only needs to consider some temporal
information, usually the makespan of already scheduled jobs. This way, the number of
states and thus the worst-case time and space complexity are only pseudo-polynomial.

In this paper we study a new way of indirectly solving a strict problem by directly
solving only relaxed problems. Notice that, for a strongly NP-hard strict problem, the
number of direct relaxed problem resolutions needed is necessarily exponential in the worst
case. As far as we know, only two ways of solving a strict problem through its relaxed
counterparts are described in the literature: Inclusion-Exclusion and Lagrangian relaxation.

Inclusion-Exclusion is a mathematical formula used to count the number of solutions
of a strict problem instance, given the number of solutions of an exponential number of
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corresponding relaxed problems instances. On a computational point of view, the Inclusion-
Exclusion principle (Fomin and Kratsch 2010, Nederlof 2008) consists in reducing an op-
timization problem instance to a polynomial number of decision problems instances, and
solving them using the Inclusion-Exclusion formula. Inclusion-Exclusion is conceived as a
theoretical, rather than practical tool. On a practical point of view, it is outperformed by
other exact algorithms such as Branch-and-Bound. But on a theoretical point of view, it
outperforms them and achieves a moderately exponential worst-case time complexity along
with a pseudo-polynomial worst-case space complexity (Ploton and T’kindt 2022a, Ploton
and T’kindt 2022b).

Lagrangian relaxation consists in trading a constraint for penalties. Each job j is as-
signed a penalty λj ∈ R and the penalties form together a vector λ = (λ1, . . . , λn). Then,
a penalized objective value is computed and normalized such as to eliminate any penalty
in a strict schedule. This penalized objective value is a lower bound of the Lagrangian dual
optimum, itself a lower bound of the objective value of any strict schedule.

Any method to update λ and derive the closest possible lower bound of the Lagrangian
dual optimum is suitable. Abdul-Razaq and Potts (1988) used a subgradient descent and
derived a lower bound usable in a Branch-and-Bound procedure. Their work has been
integrated by Tanaka et al. (2009), whose algorithm constitutes, as far as we know, the
current state of the art in practice for the weighted tardiness minimization problem.

2 Permutation constraint relaxation and permutation classes

We now introduce a new iterative method to closely approximate the Lagrangian dual
optimum, using the notion of permutation class and concepts from Inclusion-Exclusion.

For any relaxed schedule S solution of the 1|no-idle|∑j fj problem, and for any job j,
we define nj(S) as the number of occurrences of j in S. Thus, a schedule is strict when
nj(S) = 1 for all j. We denote the objective function as γ =

∑
j fj , and we define the

normalized penalized objective γλ as γλ(S) = γ(S) +
∑n

j=1(nj − 1)λj . The Lagrangian
L(λ) associated to a particular λ is the minimum of γλ(S) among all relaxed schedules S.

Following Abdul-Razaq and Potts (1988), L(λ) can be computed using the following
dynamic programming scheme: we define optλ[C] as the minimum γλ(S) among relaxed
schedules S whose completion time is C. Then, we have γλ(S) = optλ[

∑n
j=1 pj ], and:

optλ[ 0 ] = γλ(empty relaxed schedule) = −
n∑

j=1

λj (1)

optλ[C] = min
j∈{1...n} | pj≤C

(optλ[C − pj ] + fj(C) + λj) for C > 0 (2)

A corresponding optimal schedule S∗(λ) can be derived from a backtrace of this scheme.

We now cope with permutation classes. We define two schedules S and S′ as equivalent
up to a permutation when we can derive S′ by permuting the jobs of S or, equivalently,
when nj(S) = nj(S

′) for all j. We define the permutation class Cl(S) of a schedule S
as the set of schedules S′ which are equivalent to S up to a permutation. Notice that all
strict schedules are equivalent to each other and form a single permutation class. Moreover,
permutation classes form a partition of the set of all relaxed schedules.

Our aim is to iteratively find a lower bound LB that approaches the Lagrangian dual
optimum supλ L(λ). We now describe a way to update penalties and enhance the lower
bound of the dual optimal Lagrangian. Suppose that a vector of penalties λ and a lower
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bound LB are already known. We conceptually partition the set of relaxed schedules in per-
mutation classes, and we represent schedules, as in Figure 1a, with classes on the horizontal
axis (4 classes in the example) and objectives on the vertical axis. Notice that modifying
λ shifts each class vertically without changing its shape. This is because the difference
between penalized objectives of two equivalent schedules S and S′ does not depend on λ:
γλ(S

′)− γλ(S) = γ(S′)− γ(S).

permutation class

γ
λ

LB

S

stricts

(a) Initially: S optimal for λ

permutation class

γ
λ′

LB
S

stricts

(b) Case S optimal for λ′

permutation class

γ
λ′

LB
S

stricts

(c) Case S not optimal for λ′

Fig. 1: Refining a search for a dual Lagrangian optimum

We solve the relaxed problem for λ, so we find an optimal schedule S = S∗(λ) with
objective L(λ). For now, we assume that we can choose a new penalty vector λ′ which
improves the bound, i.e. such that γλ′(S) > LB. An efficient way of choosing λ′ will be
described later on. There are two cases: either S remains optimal for λ′, or it is not anymore.

In the case where S remains optimal for λ′ (Figure 1b), we have L(λ′) = γλ′(S) > LB
so, we increase the bound by taking LB ← γλ′(S), which improves it.

In the case where S is no longer optimal for λ′ (Figure 1c), it is guaranteed that the
whole class Cl(S) is dominated. This class is eliminated of the search, which simplifies the
problem.

We derive an iterative method (Algorithm 1) to compute a lower bound of the La-
grangian dual optimum. This algorithm is very close in structure to the sub-gradient de-
scent of Abdul-Razaq and Potts (1988) but the way to update the penalties in statement (3)
is radically different.

Algorithm 1: Computation of a lower bound by elimination of permutation classes.

function PermutationClassLB :
∀j, λj ← 0
LB ← LB0 // any lower bound
for k ← 1, 2, 3, ... do

Sk ← S∗(λ) // relaxed problem with penalties solved using Dynamic Programming
LB ← max(LB, γλ(Sk))
if Sk is strict then: strict problem solved, Sk optimal. stop.
Find a new λ such that ∀k′ ≤ k, γλ(Sk′) > LB (3)
if there is no such λ then: stop.

result: LB is a lower bound of supλ L(λ), itself lower bound of the optimum objective.

We now describe how to implement statement (3) in polynomial time. It is convenient
to define LBk as the value of LB at iteration k. Expanding the definition of γλ, we derive
that each condition in statement (3) is a linear inequality involving λ1, . . . , λn and LB.
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Taking into account that LB ≥ LBk′ for each k′ ≤ k, we derive this linear inequality
system:

γ(S1) +

n∑

j=1

(nj(S1)− 1)λj > LB (E1) and LB ≥ LB1 (E′
1)

. . .

γ(Sk) +
n∑

j=1

(nj(Sk)− 1)λj > LB (Ek) and LB ≥ LBk (E′
k)

This is a system with a fixed set of real variables (λj and LB) and no integer variable.
Moreover, this system is incremental: at iteration k, both equations (Ek) and (E′

k) are
added, and previous equations are neither modified nor withdrawn. As a consequence, this
system is guaranteed to be solvable in polynomial time and has a chance to be efficiently
solved by standard Linear Programming solvers.

3 Computational experiments on the 1|d̃j |
∑

j wjCj problem

We have implemented and compared the performance of our algorithm with the refer-
ence algorithm (ARP) of Abdul-Razaq and Potts (1988), in the context of the 1|d̃j |

∑
j wjCj

strongly NP-hard problem. We have compared speeds and bound quality, i.e. deviation from
the optimum objective value, provided by the exact branching algorithm of Shang et al.
(2021). According to our results, both algorithms share the same time complexity: our
algorithm is around 10 times slower independently of the instance size, and memory con-
sumption is not a limiting factor. But our algorithm has a better bound quality: around
0.2% compared to 0.6% for (ARP). We plan to replace (ARP) with our new algorithm in
the algorithm of Tanaka et al. (2009), and compare efficiencies.

In conclusion, permutation constraint relaxation appears as a valuable tool to solve
scheduling problems, but there are still many open questions ahead. On a theoretical point
of view, is there a way to bound the number of permutation classes and derive a worst-
case complexity bound ? On a practical point of view, is there a way of accelerating the
convergence of the iterations, e.g. by a clever choice of a particular solution of the linear
system ? These questions are of great importance to widen the application domain of the
permutation constraint relaxation technique.
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1 Introduction

Passenger trains have a very precise schedule due to the transportation demand and
railway systems aim to exploit rolling stocks to their maximum capacity. Maintaining a
healthy network of rolling stocks can be really difficult because it must rely on an effec-
tive maintenance schedule that does not impact the transportation plan. But while some
maintenance operations are known beforehand, some repairing that could not have been
predicted still needs to be done. These jobs are brought to our knowledge through the train
itself. The time allowed to fix these malfunctions is relatively short (from a few hours to a
few days). It is allowed to schedule a complete repair, or a partial repair named diagnosis
that ensures that the train can be used in normal condition even if the operation is not
completely done. The aim of our study is to find an efficient way to schedule the starting
times of the maintenance jobs, completely or not, so that their due dates are met.

Section 2 defines the considered problem, next presents a Mixed Integer Linear Pro-
gramming (MILP) model and a Constraint Programming (CP) model. Section 3 introduces
two local search heuristics based on these models and Section 4 provides an overview of
the computational results.

2 Problem definition and associated models

2.1 Problem definition

Let I = {1, ..., n} be the set of jobs to schedule and J = {1, ...,m} be the set of tracks
available for the maintenance. Each job i has a repair duration pi, a diagnosis duration pdi , a
due date di, a tardiness cost wi, a diagnosis cost ui and a need for a specific infrastructure.
Each track j has one or more infrastructures. We define Vi as the vector of tracks j on
which job i can be assigned. Starting from the compatibility between the infrastructure
requirements of the jobs, those available on the tracks and the availabilities of trains and
tracks, we define T d

ij as the set of time intervals at which job i can start on track j. The
starting times values are in [0, H] with H being the planning horizon. We define Ti as the
tardiness of job i based on its starting time. Let Si be the starting time of job i in a given
schedule, then we have: Ti = Si − di.

In this problem, we aim to minimize the sum of the weighted tardiness of jobs while
limiting the number of performed diagnosis, especially on highly important repairs. We
denote by ε the total cost allowed for the performed diagnosis. This problem is noted
P |T d

ij |
∑
wiTi and is strongly NP-Hard.
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2.2 A Mixed Integer Linear Programming Model

We present a time-indexed model based on binary variables representing the times t at
which jobs start. We have:

• xijt : 1 if job i starts on track j at the time t, 0 otherwise, ∀i ∈ I, ∀j ∈ Vi, ∀t ∈ T d
ij ;

• yi : 1 if job i is scheduled in diagnosis mode, 0 if it is scheduled in repair mode, ∀i ∈ I.

We also introduce integer variables to model the starting times and tardiness that are
used to compute the objective function:

• Si : the starting time of job i, ∀i ∈ I ;
• Ti : the tardiness of job i based on its due date, ∀i ∈ I.

The model is given as follows :

Minimize z1 =
n∑

i=1

wi × Ti (1)

n∑

i=1

ui × yi ≤ ε (2)

m∑

j=1

∑

[tb,te]∈T d
ij

te−pd
i∑

t=tb

xijt ≤ 1, ∀i ∈ I (3)

m∑

j=1

∑

[tb,te]∈T d
ij

te−pi∑

t=tb

xijt ≥ 1− yi, ∀i ∈ I (4)

m∑

j=1

∑

[tb,te]∈T d
ij

te−pd
i∑

t=tb

xijt ≥ yi, ∀i ∈ I (5)

n∑

i′=1
i′ ̸=i

t+pd
i∑

t′=t

xi′jt′ ≤ (1− xijt)× n,
∀i ∈ I
∀j ∈ Vi
∀t ∈ T d

ij

(6)

n∑

i′=1
i′ ̸=i

t+pi−1∑

t′=t+pd
i

xi′jt′ ≤ (yi − xijt + 1)× n,
∀i ∈ I
∀j ∈ Vi
∀t ∈ T d

ij

(7)

Si ≥
m∑

j=1

∑

[tb,te]∈T d
ij

te−pd
i∑

t=tb

xijt × t, ∀i ∈ I (8)

Ti ≥ 0
Ti ≥ Si − di , ∀i ∈ I (9)

The objective function (1) represents the total weighted tardiness that has to be min-
imized. The constraint (2) gives a limit on the cost induced by the performed diagnosis.
Constraints (3), (4) and (5) are used to schedule each job at a single time point, taking
into account the possibility of a diagnosis. Constraints (6) and (7) guarantee that a track
can host only one job at a time, whether it is a diagnosis or a complete repair. Constraints
(8) and (9) are used to compute the starting times of jobs and their tardiness.
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2.3 A Constraint Programming Model

In this section, we present a constraint programming (CP) model based on interval
variables. For this model we define Ji as the interval variable associated with job i, Jij as
the interval variable representing the possibility of job i being scheduled on track j and Jc

ij

(resp. Jd
ij) as the interval variables representing the possibility of job i being scheduled on

track j in complete repair mode (resp. in diagnosis mode).
To guarantee that exactly one track and one mode (complete repair or diagnosis) is

selected for each job, we use two levels of alternatives: the first one ensures that exactly
one track is selected for each job, while the second ensures that exactly one mode is selected
for each job. For each track, we use a disjonctive constraint to ensure that the jobs do not
overlap. Due to a lack of space, the complete model is not reported in the paper but it will
be presented during the conference.

3 Heuristics

In this section, we introduce two local search heuristics. We chose to use matheuristics
because they proved to be efficient for solving scheduling problems (see e.g. (T’kindt 2023)).
We chose to use two different matheuristic frameworks to leverage at best these two models.

The concept used is the same for both as they are local search heuristics: we define a
neighbourhood of solutions to explore and we try to iteratively improve our current solution,
step by step, until we are stuck into a local optimum or we have reach a given time limit.
Each heuristic exploits two procedures: the first one, called intensification, explores the
neighbourhood of a solution. The second one, called diversification, is used in case we are
stuck into a local optimum to try to jump to another neighbourhood that may be more
interesting.

3.1 Local Branching

In this section we describe a Local Branching (LB) heuristic (Fischetti and Lodi 2003)
that exploits the MILP formulation given in section 2.2. For this heuristic, we use a Ham-
ming distance constraint to define the neighbourhood of the current solution. This distance
counts every change between two consecutive iterations. Let sb be the solution at the cur-
rent iteration, and let xb and yb be its associated variables. We define the following sets:

Xb
0 = {xijt|∀i ∈ I, j ∈ Vi, t ∈ T d

ij and xbijt = 0} Y b
0 = {yi|∀i ∈ I and ybi = 0}

Xb
1 = {xijt|∀i ∈ I, j ∈ Vi, t ∈ T d

ij and xbijt = 1} Y b
1 = {yi|∀i ∈ I and ybi = 1}

and then the Hamming distances:

Dx(x, xb) =
∑

xijt∈Xb
0

xijt +
∑

xijt∈Xb
1

(1− xijt)

Dy(y, yb) =
∑

yi∈Y b
0

yi +
∑

yi∈Y b
1

(1− yi)

Then, the intensification and the diversification processes limit the number of changes
in the current solution by using these distances and a parameter Kx.
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3.2 Variable Partitioning Local Search

In this section we describe a variable partitioning local search (VPLS) heuristic (Della
Croce et. al. 2013) that exploits the constraint programming formulation sketched in section
2.3. The neighbourhood is defined by randomly selecting multiple non-overlapping intervals
and a set of tracks. At each iteration, we free everything that has been scheduled in the
selected intervals and tracks. Everything else is set exactly as it is in the current solution
(Figure 1). The corresponding subproblem is solved by CP. Then, we repeat as many
iterations as possible within a given time limit.

Fig. 1. Exemple of neighboorhood for the intensification process in the VPLS heuristic

4 Experiments

We conducted experiments on a set of randomly generated instances. This set contains
105 different types of instances defined by a triplet (s, m, n). The parameter s determines
the way availabilities between trains and tracks are distributed through simulating different
maintenance sites. All the generated instances follow a structure similar to the case of
rolling stocks fleets and maintenance sites located in Paris, more specifically in the northern
part of the city, and represent scenarios that the planners may encounter during their work.

After comparing the two exact models, we see that for difficult instances the CP model
is, on the average, worse than the MILP model. In some cases both models find an optimal
solution but the MILP model struggles to prove its optimality. The use of the CP model is
very time efficient for infeasible and easy instances but for big and difficult instances, while
both model reach the given time limit, the MILP shows better deviations. After evaluating
the two heuristics, we see that LB and VPLS improve the results of their respective parent
model alone but also that on the average LB improves the results of both models. The VPLS
heuristic is faster than LB in most cases but not necessarily more efficient. Therefore, VPLS
is more interesting to use with a reduced time budget. But as long as efficiency is considered,
LB outperforms VPLS. More detailed results will be discussed during the conference.

References

Fischetti M. and Lodi A., 2003, “Local branching“, Mathematical Programming, vol. 98, pp. 23-47.
Della Croce, F. and Grosso, AC. and Salassa, F. and others, 2013, “Matheuristics: embedding

MILP solvers into heuristic algorithms for combinatorial optimization problems“, Heuristics:
theory and applications, pp. 31-52

T’kindt, V., 2023, “The marriage of Matheuristics and Scheduling“, Scheduling seminar, https:
//schedulingseminar.com/presentations/SchedulingSeminar_VincentTkindt.pdf

Booklet of abstracts for the 19th International Workshop on Project Management and Scheduling, April 2�5, 2024

116



Artificial Intelligence (AI) Application in Construction
Scheduling and Project Management: A Theoretical

Framework

Saeed Rokooei1 and Mahdi Ghafoori1

Mississippi State University, U.S.
srokooei@caad.msstate.edu, mghafoori@caad.msstate.edu

Keywords: Artificial Intelligence, Construction, Project Management.

1 Abstract

The application of Artificial Intelligence (AI) has witnessed a notable surge across di-
verse industries, with a parallel emergence of numerous AI applications tailored for the
Architecture, Engineering, and Construction (AEC) sector. Despite this, untapped poten-
tial in construction scheduling and project management presents opportunities for further
AI advancements. This paper introduces a theoretical model for an AI-based construc-
tion scheduling approach that leverages Building Information Modeling (BIM), addressing
unexplored potential in the AEC industry. The model’s high-level hierarchy, components,
development process, implementation approach, and outputs are outlined. The model in-
spires project management scholars to utilize the BIM model along with other legacy
information to design and develop AI-based construction schedules.

2 Background

Artificial intelligence (AI) applications are experiencing exponential growth across var-
ious fields and industries. Companies are actively pursuing the latest developments in
AI applications to align their operations and approaches with cutting-edge technologies.
Concurrently, the construction industry has initiated the exploration and utilization of
emerging technologies, although progress and implementation face typical delays inherent
to the nature of the industry. The expectation is that AI-based tools will find extensive use
in project management. These tools can contribute to process automation, data analysis,
as well as team communication and collaboration. However, several challenges, such as data
privacy and security, ethical considerations, adoption barriers, and change management,
must be effectively addressed (Weng 2023). Savio and Ali (2023) reviewed the application
of AI in project management, noting that despite challenges such as data quality, inte-
gration with existing systems, and uncertainties in initial investments, AI can aid project
managers in data-driven decision-making, risk management enhancement, and optimiza-
tion of resource allocation. Various studies, such as those by Hamada et al. (2021), Sree
and SNSVSC (2016), Han et al. (2015), and Crawford et al. (2015), discuss the use of AI
in project management, employing techniques such as fuzzy models, machine learning, and
optimization algorithms. Within the construction sector, project management stands out
as a rich context for AI applications (Aljebory and QaisIssam 2019). Taboada et al. (2023)
conducted a systematic literature review, concluding that AI-enabled project management
applications have significantly increased over the last decade. However, their classification
did not produce a category for planning and scheduling. Hajdasz (2014) developed a mono-
lithic construction computer-aided system (MoCCAS) as a comprehensive decision support
tool for construction site management in repetitive projects. Wang et al. (2012) utilized

Booklet of abstracts for the 19th International Workshop on Project Management and Scheduling, April 2�5, 2024

117



artificial neural networks and support vector machines to predict project Key Performance
Indicators (KPIs), including scheduling performance. Cheng and Hoang (2018) fused the
least squares support vector machine (LS-SVM) and the firefly algorithm (FA) to estimate
the duration of diaphragm walls in construction projects, achieving accurate forecasts with
low prediction deviation (<10%). Faghihi et al. (2015) conducted a comprehensive review
of various automation applications in construction scheduling over three decades, revealing
that genetic algorithms, expert systems, case-based reasoning, model-based approaches,
and neural networks were the most commonly used methods in construction scheduling, in
that order.

3 Problem statement

The accurate prediction of potential delays in construction projects remains a critical
challenge that significantly impacts project timelines and resource allocation. The vast
amount of historical project data, coupled with external factors such as weather conditions,
regulatory changes, and supply chain disruptions, presents a complex landscape for project
managers to navigate. Traditional project scheduling methods often fall short in accounting
for these dynamic variables, leading to unforeseen delays and cost overruns. To address
this issue, there is a growing need to harness the power of artificial intelligence (AI) and
predictive analytics to analyze historical project data and external factors systematically.
The aim of this research is to investigate and develop a theoretical framework for an AI-
driven construction scheduling methodology. This approach harnesses the capabilities of
Building Information Modeling (BIM) to analyze both historical project data and external
factors. By incorporating BIM Models and other relevant data, the research aims to deliver
a robust tool that empowers construction project managers to predict potential delays
accurately and make optimized scheduling decisions. This would enable project managers
to proactively identify and mitigate risks, optimize resource allocation, and make informed
scheduling decisions. However, the development and implementation of such a predictive
analytics system poses various technical, methodological, and practical challenges that
need to be addressed. These challenges include but are not limited to data integration,
model accuracy, real-time data updates, and user-friendly interfaces for seamless adoption
by construction professionals.

4 Model development and implementation

The model development encompasses several key components, as illustrated in Figure
1. The model begins by collecting historical project data, including project schedules and
timelines, resource allocations, relevant performance metrics, and construction BIM mod-
els. This data serves as the foundation for training and validating the predictive model.
Subsequently, in the next step, relevant features are extracted from the collected data.
These features may include project size, complexity, historical weather patterns, economic
indicators, and regulatory changes. Importantly, feature engineering plays a crucial role
in enhancing the model’s ability to capture the diverse factors influencing project delays.
Moreover, the feature-engineered data is used to train the predictive model. Depending
on the complexity and nature of the data, machine learning algorithms such as regression,
decision trees, or neural networks are employed to learn the patterns and relationships
within the dataset. Finally, after the training phase, the trained model is validated using
additional historical data not used during the training phase. This step ensures the model’s
generalizability and reliability in predicting project delays across various scenarios. Once
validated, the predictive model is integrated into the project management system. Con-
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sequently, it becomes a tool for real-time decision-making, offering insights into potential
delays and aiding in schedule optimization.

Fig. 1. Predictive Analytics Model Flowchart

To successfully implement the predictive analytics model, the following types of input
data are necessary: (1) Historical Project Data, wherein project timelines, milestones, and
resource allocations from completed projects are crucial for training the model; (2) External
Factors, encompassing data on external factors such as weather conditions, economic indi-
cators, and regulatory changes that are required to capture the broader context influencing
project delays; (3) BIM models, which include all construction elements and components,
and hence, quantity take offs (QTO) and (4) Real-Time Project Data, involving real-time
data on progress, resource usage, and any unexpected events for ongoing projects, which
are necessary to continually update the predictive model and enhance its accuracy.

5 Model Output

The output of the predictive analytics model is a forecast of potential project delays,
which can be presented in various forms, including: (1) Prediction of activity durations,
forming the project schedule through activity sequencing and duration estimates; (2) prob-
ability of delay, indicating the likelihood of a project delay based on the current project
status and external factors; (3) timeframe of delay, providing an estimate of the expected
delay duration, enabling project managers to proactively address potential issues; and (4)
suggested mitigation strategies, offering recommendations for actions to mitigate or min-
imize the predicted delays, such as resource reallocation or schedule adjustments. One
example of a mitigation strategy could be resource reallocation. If the predictive analytics
model forecasts a potential delay in a certain phase of the project due to resource con-
straints, the suggested mitigation strategy could involve reallocating resources from less
critical tasks to the ones causing the delay. Beyond delivering forecasts of potential project
delays, the predictive analytics model offers a dynamic tool for project management op-
timization. The probability of delay metric provides a nuanced understanding, allowing
project teams to allocate resources judiciously and prioritize tasks effectively. The time-
frame of delay estimation empowers project managers to formulate contingency plans and
adjust project timelines strategically. Moreover, the suggested mitigation strategies fur-
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nish actionable insights, guiding decision-makers in implementing proactive measures to
circumvent or mitigate delays. This comprehensive utilization of the predictive analytics
model not only enhances decision-making precision but also contributes to overall project
success by minimizing disruptions and maximizing resource efficiency.

6 Summary and Conclusion

The paper addresses the critical challenge of accurately predicting delays in construction
projects through the development of an AI-driven predictive analytics model. Traditional
scheduling methods often fail to account for dynamic variables, leading to unforeseen de-
lays and cost overruns. To mitigate this, the research proposes a framework that utilizes
Building Information Modeling (BIM) and historical project data to systematically analyze
and predict potential delays. By leveraging historical project data and external factors, the
model enables construction professionals to make more informed decisions, minimize dis-
ruptions, and maximize resource efficiency, ultimately contributing to the overall success
of construction projects. However, the implementation of such a model presents various
technical, methodological, and practical challenges that need to be addressed for effective
utilization in real-world construction scenarios.
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1 Problem definition

In project scheduling, allowing the possibility of interrupting the execution of activities
can play an important role. This leads us to consider the preemptive version of the resource
constrained project scheduling problem (preemptive RCPSP). Our purpose is to investigate
the tradeoff between the total number of interruptions across a project and the makespan.
In particular, we want to investigate the problem in a context in which the resource profile
varies over time, which typically may create the need for activity preemption.

Preemptions may bring benefits in terms of project makespan, but in some cases they
also entail undesired effects, such as an increased risk of operational mistakes, or difficul-
ties in realigning resources with project execution. In the preemptive RCPSP literature,
most studies either do not consider any restriction on the number of activity preemptions
(Moukrim et. al. 2015), or consider that the number of preemptions of each activity is lim-
ited, and each part of an activity must have a minimum duration (Quintanilla et. al. 2015).
In this study we consider that activities can be preempted at any time and we want to
determine the set of Pareto optimal schedules from the viewpoint of makespan and total
number of preemptions.

We address the scenario in which resource availability is time-varying. This feature is
inspired by a real case study in which the resources correspond to personnel from distinct
company departments. These resources are not constantly available over time because the
same unit may be temporarily involved in other projects. Time intervals during which each
resource is available for the current project are known in advance.

2 ILP formulation

In order to solve this bicriteria problem, namely minimizing makespan and number
of preemptions, new ILP formulations are proposed. We consider the problem in which
activities can be interrupted and resumed later with no losses. Each activity requires a
definite number of resources (of one or more types) throughout its execution. In each time
slot, there is a limit on the available resources of each type, which cannot be exceeded by
the total resource requirement for that time slot.

A project is represented by an acyclic graph G(V,E), in which the set of |V | = n nodes
corresponds to activities and each arc (i, j) ∈ E indicates that activity j can only start
after activity i is completed. Time is discretized in time slots, i.e., time slot t starts at time
t− 1 and ends at time t. There is a set K of renewable resources. Each activity i requires
an integer number di of time slots (duration) to be performed and aki units of resource k
(k ∈ K) during each time slot throughout its execution. During time slot t, there are nkt
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units of resource k available, so the total usage of resource k in each time slot t must not
exceed nkt (t = 1, . . . , T , k ∈ K).

We present a formulation (MIN_PRMP) in which the objective is to minimize the
number of preemptions with the constraint that project makespan cannot exceed a value
Q. We let xit = 1 if activity i is being executed during time slot t.

min
n∑

i=1

T−1∑

t=1

zit (1)

T∑

t=1

txnt ≤ Q ∀t = 1, . . . , T (2)

zit ≥ xit − xi,t+1 ∀i ∈ V, t = 1, . . . , T − 1 (3)
T∑

t=1

xit = di ∀i ∈ V (4)

dixj,t+1 ≤
t∑

q=1

xiq ∀(i, j) ∈ E, t = 1, . . . , T (5)

n∑

i=1

akixit ≤ nkt ∀k ∈ K, t = 1, . . . , T (6)

xit, zit ∈ {0, 1} ∀i ∈ V, t = 1, . . . , T (7)

The makespan constraint is modeled by (2). Constraints (3) set zit variables to 1 exactly
when xit = 1 and xi,t+1 = 0, i.e., when the activity is either completed or preempted
at time t. Activity duration is enforced by constraints (4). Precedence relations between
activities are modeled by (5). In fact, if i must precede j ((i, j) ∈ E), i must have been in
execution for di periods before j can start. In (6) we impose that the total amount of each
resource in use in each time slot t does not exceed its availability in that time slot. Variables
zit allow counting the number of preemptions. In fact, for a given feasible schedule, the
actual number of preemptions is

∑n
i=1

∑T−1
t=0 zit−n, which explains the objective function

(1). These variables can be discarded when computing the two extreme PO schedules,
respectively the minimum-makespan nonpreemptive schedule and the minimum-makespan
schedule with an unlimited number of preemptions.

If preemptions are beneficial, each Pareto front has two extreme values of Q: the min-
imum nonpreemptive makespan and the minimum makespan with an unlimited num-
ber of preemptions. To compute these two extreme values two formulations are used
(NON_PRMP and INF_PRMP), derived from Kaplan (1988).

3 Computational experiments

The experiments were conducted using a 12th Gen Intel(R) Core(TM) i9-12900 proces-
sor running at 2.40 GHz, with 128 GB of RAM. The operating system utilized was Windows
Server 2022 Standard version 21H2. The formulations were implemented in Python 3.11
within PyCharm 2022.3.2 environment. The Gurobi solver (version 10.0.0) was employed
for optimization.

We conducted two distinct experiments. First, we applied the ILP formulations to
a set of benchmark instances, namely the 480 instances of the J30 set of PSPLIB. These
instances (for all of which n = 30) were appropriately modified to simulate various resource
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availability scenarios. The second experiment concerns a practical application within an
IT company, involving a real-life project.

In the first experiment, we consider seven different scenarios concerning how resources
vary over time. Scenarios are characterized by parameters such as resource variation in-
tensity (i.e., the percentage decrease of resource availability) with respect to the baseline
scenario, variation lag (i.e., the minimum time distance between two variation intervals)
and variation length.

By applying the ILP formulations to the benchmark we were able to obtain the whole
set of Pareto optimal solutions. This allows to assess how many Pareto optimal solutions
arise and how much the makespan benefits from activity preemption.

Various insights can be obtained from the computational experiments, including:

– The utility of preempting some activity is strictly related to intensity variation. In 26%
of the instances in the baseline scenario preemption is useful, and this figure grows
to roughly 50% for 20% of intensity variation, and 70% when intensity variations are
higher.

– The benefit of preemption increases with intensity and frequency variation. In the
baseline scenario, the average makespan gain of a preemptive solution (with respect to
an optimal nonpreemptive schedule) is 2.9%. The impact of preemption is higher as
both variation frequency and intensity grow. Considering a variation intensity of 20%,
the gain is between 4 and 5%, while for greater intensity variation (40% decrease with
respect to the baseline) it is higher than 6%.

– Similarly, the count of PO solutions increases with variation intensity. As long as vari-
ation intensity is 20%, in more than 70% of the instances the Pareto set consists solely
of two PO solutions, while this occurs only in 50% of the instances in scenarios with
higher intensity variation. While in the baseline scenario the average size of the Pareto
front is 1.3, it is 1.8 and 2.3 in the other two scenarios.

– With respect to CPU times, for 365 out of 480 instances the whole Pareto set was
computed in the baseline scenario, using a time limit of 1000 seconds for each ILP.
The greater the intensity variation, the higher the runtimes. In fact, the above figure
decreases to 325/480 and 296/480 for medium and large intensity variation respectively.
However, when resource variation follows an irregular pattern, the problems are solved
faster.

– Most often, the first preemption leads to the most significant marginal improvement
on makespan, compared to subsequent preemptions (if any). This outcome remains
consistent across all scenarios, although the gain is more apparent as variation intensity
increases. Apart from very few exceptions, subsequent preemptions display decreasing
marginal returns, as typical of limited resource settings.

– Considering all the PO schedules computed in all instances of each scenario, the number
of PO schedules in which there is at least one activity which is preempted more than
once ranges between 5% (variation intensity of 40%) and 13% (in the baseline scenario).
This suggests that if a constraint is enforced on the maximum number of preemptions
for each single activity (as in Ballestín et. al. (2009), Ma et. al. (2022), Zhu et. al.
(2011)), for most of the instances derived from J30, setting this bound to 1 is equivalent
to allowing unlimited preemptions.

For the second experiment, we applied the proposed approach to a real-life project
arising in a pharmaceutical machinery manufacturer based in Siena, Italy, specialized in the
design of machinery for the fill-finishing process of injectable drugs. The machines produced
have a modular design, which offers the advantage of easy customization. Correspondingly,
the production project follows a standard template, in which some activities depend on
the specific customization of the machine being produced. As such activities typically take
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place before project starts, here we consider a standard project including all the activities
which are always present in any actual project. The benefits achieved in terms of makespan
reduction on the standard project are typically applicable to any customer order. Due to the
long time span required by the project, the time unit adopted for planning purposes is the
working week, i.e., 5 days, and hence this is also the minimum duration of a task. In this case
study there are four resource types, corresponding to the company business units. Resources
are renewable and one unit corresponds to one employee of the respective department.
Resource availability is determined by staff commitments to other pre-scheduled projects,
hence the availability of resources varies over time and it is known in advance. The project
instance consists of 78 activities, each having up to three predecessors. A limited number
of activities cannot be interrupted for technical reasons. We account for this by adding to
the model a non-preemption constraint for each of them.

The planning time horizon that the project is expected not to exceed is T = 100 working
weeks. This limit is based on previous experience on similar projects. The experiments show
that in this instance the Pareto front consists of four solutions, corresponding to 0, 1, 2
and 3 preemptions respectively. Despite the relatively large number of activities, the model
has been solved in few seconds of computation.

The results show that without preemptions the project makespan is 99 weeks, and that
the possibility to interrupt activities presents a significant opportunity to decrease the
overall project duration. The largest marginal gain (6 weeks) is achieved by the second
preemption. Allowing three preemptions achieves a total gain of 11 weeks on makespan,
i.e., 11%. In this example, preemptions occur due to variations in resource availability.

Finally, since many project activities have unit duration, they are treated as non-
interruptible by the model. Adopting a shorter time unit (e.g., day), the duration of some
activities might be expressed in greater detail, and hence further gains might be obtained,
but the resulting schedule would be inherently less robust, especially on a long time span.

Acknowledgments

This research was supported by the Italian Ministry of University and Research, grant
PNRR - Next Generation EU - THE - Spoke 10 - CUP: B63C22000680007.

References

Ballestín F., V. Valls and S. Quintanilla, 2009, “Scheduling projects with limited number of pre-
emptions", Computers and Operations Research, Vol. 36, pp. 2913-2925.

Kaplan L.A., 1988, “Resource-constrained project scheduling with preemption of jobs", Doctoral
dissertation, University of Michigan, University of Michigan Library.

Kolisch R., A. Sprecher, 1997, “PSPLIB - A project scheduling problem library", European Journal
of Operational Research, Vol. 96, pp. 205-216.

Ma Z., M. Ning and Y. Wang, 2022, “Proactive Project Scheduling With Activity Splitting and
Resource Transfer Times Under Uncertain Environments", IEEE Access, Vol. 10, pp. 87490-
87499.

Moukrim A., A. Quilliot and H. Toussaint, 2015, “An effective branch-and-price algorithm for
the Preemptive Resource Constrained Project Scheduling Problem based on minimal Interval
Order Enumeration", European Journal of Operational Research, Vol. 244, pp. 360-368.

Quintanilla S., P. Lino, Á. Pérez, F. Ballestín and V. Valls, 2015, “Integer preemption problems",
Handbook on project management and scheduling, Vol. 01, pp. 231-250, Springer, Berlin.

Zhu J., X. Li and W. Shen, 2011, “Effective genetic algorithm for resource-constrained project
scheduling with limited preemptions", International Journal of Machine Learning and Cyber-
netics, Vol. 2, pp.55-65.

Booklet of abstracts for the 19th International Workshop on Project Management and Scheduling, April 2�5, 2024

124



Mixed-Integer Programming Models for Mid-Term
Production Planning in Integrated Steel Production

Jonas Saupe, Philipp Fath and David Sayah

FZI Research Center for Information Technology, Karlsruhe, Germany
{saupe,fath,sayah}@fzi.de

Keywords: Mixed-Integer Linear Programming, Due-Date Management, Applications,
Make-to-Order, Steel Industry.

1 Introduction and application context

This work presents a case study concerned with automating a recurring planning task at
a German steel manufacturing company. The planning task is situated in a make-to-order
environment. Operations managers face this task attempting to align limited production
capacities of multiple production facilities with booked customer orders over a mid-term
planning horizon. Similar tactical planning tasks appear frequently in various operations
and supply chain management contexts, and they are often referred to as master planning
(Mönch et al. 2017) or supply network planning (Neumann et al. 2002).

As a process industry (Schwindt and Trautmann 2000), integrated steel production
can be seen as a sequence of successive transformation processes (operations), e.g., iron
making, continuous casting, hot rolling, or cutting. It is further characterized by a variety
of products such as raw materials (iron ore, coal, etc.), semi-finished products (pig iron,
molten steel, slabs, etc.), and finished products (plates, sheets, long products, etc.) that are
being routed through a network of processing units (blast furnace, continuous caster, hot
rolling mill, etc.) and storage facilities (a slab yard, for instance) (Dutta and Fourer 2001).
The production capabilities of a plant often allow for multiple sequences of operations
(process plans) to manufacture a given customer order (job).

Specifically, we address the planning problem which consists in selecting a process plan
mix (set of selected process plans) and a production schedule (set of selected start times)
that fulfills the current order book (set of jobs). Under a regular objective function (e.g.,
makespan minimization), this problem is known as the process planning and scheduling
problem (PPSP). A feasible process plan mix contains a unique process plan for each job.
A feasible schedule has to respect the limited capacities of all processing units (machines) at
any time. We tackle a variant of this problem with no-wait requirements and a non-regular
objective function. Our contribution consists of two compact mixed-integer programming
(MIP) models. The first one is a special case of an existing PPSP formulation. The second
one is a knapsack-type model. We conducted experiments with an MIP solver based on
instances derived from a real-world data set.

The remainder of this paper is organized as follows. We formally define the planning
problem in Section 2 and sketch our MIP models in Section 3. Section 4 and 5 provide,
respectively, preliminary computational results and a conclusive outlook on future work.

2 Problem statement

2.1 General assumptions

Due to the tactical nature of the problem at hand, we consider a planning horizon of
one year that is discretized into time buckets (periods) each representing, e.g., a week of
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the year. In accordance with the current planning process implemented by the company,
resource capacities are aggregated on a weekly basis. Further, it is assumed that the full
capacity requirement of an operation applies to the period in which its execution ends.

Furthermore, operations are executed without preemption and delays between succes-
sive operations are forbidden (no-wait requirement). Some machines might be temporarily
unavailable for production due to, e.g., maintenance work, according to a given calendar. In
this case, production is halted and resumed as soon as the maintenance work is completed.

Finally, there are pre-defined due window requirements associated with so-called mile-
stone operations. Milestone operations of the selected process plan should finish within
their due window. Otherwise, a milestone operation incurs earliness or tardiness cost. For
instance, relevant milestones in steel manufacturing are the production start, milling of
semi-finished products, and shipping of finished products to customers. The planning ob-
jective is to determine a process plan mix and schedule matching the respective due windows
as closely as possible.

2.2 A conceptual model

Let T , J , andM denote the set of planning periods, jobs, and machines, respectively.
The set of process plans, or, (production) routes, is denoted by Π. The subset Πj ⊆ Π
contains only routes eligible for job j ∈ J so that Π = ∪j∈JΠj . A route π ∈ Π is a
sequence (oπ,1, . . . , oπ,nπ

) of nπ operations. Let Oπ denote the set of operations in route
π ∈ Π and let O = ∪π∈ΠOπ. Processing an operation o ∈ Oπ requires a (net) duration
of po ≥ 0 and ro capacity units of machine mo ∈ M. The capacity of machine m ∈ M in
period t ∈ T is given by Rmt. We assume any two of the index sets in {Πj : j ∈ J } to be
pairwise disjoint; the same holds for {Oπ : π ∈ Π}. Hence, any parameters associated with
route π or operation o can be uniquely identified by the respective index.

For each route π ∈ Π, the subset Ωπ ⊆ Oπ represents its milestone operations, indexed
by k. A due window [ek, lk] is defined for each milestone operation k ∈ Ωπ. We refer to
the start ek and end lk of a due window as the earliest and latest due date for completing
milestone k, respectively.

A start time Sj and a route πj have to be selected for each job j ∈ J . To incorporate
the given machine calendars, we compute a cumulative duration p̃ot for completing route
π ∈ Π up to (including) operation o ∈ Oπ if production starts in t. Hence, the cumulative
duration p̃ot contains waiting times, e.g., due to machine shutdowns. (Adjusting the dura-
tions in this way is known as calendarization in project scheduling.) Thus, the completion
time Co(Sj , πj) of an operation o ∈ Oπj can be determined purely based on the start pe-
riod Sj and route πj selected for job j using the cumulative durations p̃ot. In particular,
this holds for milestones k ∈ Ωπj

.
By comparing the completion time of a milestone k ∈ Ωπj

to its due window [ek, lk],
earliness and tardiness values are obtained, respectively, as Ek(Sj , πj) = [ek−Ck(Sj , πj)]

+

and Tk(Sj , πj) = [Ck(Sj , πj) − lk]+, where [x]+ := max{0, x} for any x ∈ R. For given
start times S = (Sj)j∈J and selected routes π = (πj)j∈J , the overall earliness-tardiness
is defined as ET (S,π) :=

∑
j∈J

∑
k∈Ωπj

(Ek(Sj , πj) + Tk(Sj , πj)). Furthermore, the uti-
lization rmt(S,π) of machine m in period t is uniquely determined. Altogether, we can
state the following conceptual model for the no-wait earliness-tardiness process planning
and scheduling problem (nw-ET-PPSP):

min
S∈T |J |,π∈×j∈J Πj

{
ET (S,π) : rmt(S,π) ≤ Rmt,m ∈M, t ∈ T

}
. (1)
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Problem (1) is about selecting start times and routes so as to minimize overall earliness-
tardiness while respecting time-dependent capacity limits and calendars of all machines.

3 Modeling approach

We formulate the problem described in Section 2 as an MIP model. There are two
reasons for this. First, the model presented in this paper can be generalized to account for
additional requirements. These requirements can be flexibly incorporated in an MIP-based
approach. Some examples are addressed in the outlook (Section 5). Second, in tactical
planning, the time required to determine a solution is usually not critical. This makes
exact MIP-based approaches favorable over approximate methods. Next, we outline two
formulations for the nw-ET-PPSP stated in (1).

Job shop model (JS). This model contains binary variables sπt and xjπ expressing,
respectively, whether route π ∈ Π starts in period t ∈ T and whether route π ∈ Πj is
selected to produce job j ∈ J . Two sets of continuous variables are further used to measure
earliness and tardiness with respect to milestones. There are five sets of constraints. First,
it is imposed that one route is selected for each job. Second, a single start period must
be chosen for a route if and only if it is selected. A third set of constraints implements
the capacity limits for all machines and periods. The last two sets of constraints define
the earliness and tardiness variables. Similar formulations have been used in the job shop
scheduling literature (Kim and Egbelu 1999, Baptiste et al. 2017).

Knapsack model (KP). To further exploit the inherent combinatorial structure of the
problem at hand, we cast nw-ET-PPSP as a multi-dimensional multiple-choice knapsack
problem based on the following observations: First, the item set N is partitioned into
subsets N1, . . . , N|J | of route-start combinations for each job, i.e., Nj := {(π, t) : π ∈
Πj , t ∈ T } (j ∈ J ), and it is required that exactly one such combination (item) per
subset is selected. Second, selecting an item implies a certain amount of additional capacity
utilization for each machine and period (possibly zero). Moreover, one can pre-compute for
each job the earliness/tardiness implied by a route-start combination. Indeed, the knapsack
formulation contains only one set of binary variables representing item selection. This allows
us to eliminate redundant binary and continuous variables used in the JS formulation.

4 Computational results

To conduct preliminary numerical tests, we generated ten problem instances based on
real-world data from the steel manufacturer. These instances contain 250, 500, or 1000 jobs
each to be scheduled within a time horizon of one year. For each job, one or two routes are
available. In contrast to most benchmark instances from the literature, the durations of
operations in the given data are not necessarily integer. We used a computer with 32 GB
RAM and AMD Ryzen 7 Pro 2.70 GHz CPU. The models were implemented in Java v20.0.1
and solved using SCIP v8.0.4. A time limit was set to 600 seconds per instance.

The results of our computational evaluation are summarized in the table below. The
problem instances are grouped by the number of jobs. Each instance group is described by
its size (#), the mean number of routes per job (|Π|/|J |) and the mean number of opera-
tions per route (|O|/|Π|). Furthermore, we provide the average number of binary variables
(#BinVars) and constraints (#Cons) (rounded) for either of the model formulations. To
assess the performance of the model formulations, we report the following three measures:
First, column Opt(%) contains the percentage of instances for which an optimal solution
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was determined within the time limit. Second, column Gap(%) reports the average MIP
gap (in percent), computed as (UB − LB)/UB, where UB and LB, respectively, denote
the best upper and lower bound determined by the solver. Last, in column TimeOpt(s), we
report the average time (in seconds, rounded) required to determine an optimal solution,
accounting only for instances for which the time limit was not reached.

|J | # |Π|
|J |

|O|
|Π|

#BinVars #Cons Opt(%) Gap(%) TimeOpt(s)

JS KP JS KP JS KP JS KP JS KP

250 6 1.36 10.88 17,561 17,223 5,598 3,907 83 100 0 0 30 1
500 3 1.35 10.84 35,122 34,446 7,539 4,157 33 67 190 1 4 2
1000 1 1.33 10.85 69,244 67,910 11,327 4,657 0 0 7 3 - -

In the table above, it can be observed that the KP model, which is more compact in
terms of the number of constraints, outperforms the JS model both with respect to the
average gap and with respect to the average solution time. The average gap is about 88
times smaller when using the KP model, compared to the JS model. Furthermore, two
additional instances are solved to optimality within the time limit.

5 Conclusions and future work

In this paper, we considered a master planning case study in integrated steel production.
We described two MIP formulations of the problem and evaluated them using instances
derived from real-world data. Our preliminary evaluation indicates that both models can
be applied to problems of practically relevant size. For medium-sized and large instances,
the knapsack formulation outperforms the job shop formulation in terms of the percentage
of instances solved to optimality and average optimality gaps.

As indicated by the company, future work should focus on a more general process plan
structure and on integration with related planning tasks such as transportation planning.
For example, one has to account for concurrent material testing procedures that could
potentially delay the processing of a job. Moreover, during production planning, operations
managers at the company already have in mind how many transportation devices (e.g.,
ships or trucks) need to be dispatched in order to deliver the scheduled customer orders.
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1 Introduction

Recent advancements in technology, such as cloud computing and the Internet of Things
(IoT), have enabled the efficient management of data and information sharing. These tech-
nological developments have given rise to a new industrial era known as Industry 4.0
(I4.0)(Chen et al. 2018). I4.0 introduces Cyber-Physical Systems (CPS) that monitor phys-
ical processes and enable the development of smart factories, including automated schedul-
ing (Serranoruiz et al. 2021). In this paper, we focus on Zero-Defect Manufacturing (ZDM),
a quality improvement approach grounded in data-driven methods. Specifically, we delve
into a process-oriented variant of ZDM that incorporates the health status of production
machines into scheduling decisions. For instance, ZDM can alleviate a machine’s workload
if it predicts an impending failure or, if maintenance is required, it can reschedule tasks
accordingly. In essence, this approach involves the intertwining of maintenance issues with
scheduling.

The ZDM framework can be represented as a bilevel optimization problem. In this
setup, the leader manages system health and global scheduling, while the followers are
responsible for multiple CPSs. The leader makes decisions first and hands over a subset
of jobs to the followers, each one scheduling the tasks it has been assigned. Notably, both
the leader and followers can only evaluate their objective function when both have taken
their decisions. This bilevel optimization structure introduces complexities as the leader
and followers may have distinct conflicting objectives (Dempe et al. 2015). Notably, the
followers’ problem can have multiple optimal solutions, leading to two categories of bilevel
problems: optimistic and pessimistic (Dempe 2003). In the optimistic scenario, the follower
selects, among its optimal solutions the one that leads to the smallest value of the leader’s
objective function, whereas in the pessimistic case, the follower chooses the one that is the
worst for the leader.

Lately, to the best of our knowledge, the literature on bilevel scheduling is relatively
limited (T’kindt et al. 2023).

This study focuses on a scenario with one leader and one follower (CPS) composed of
parallel uniform machines where scheduling decisions occur periodically. The problem is
introduced in Section 2, while complexity results and solution approaches are sketched in
Section 3.
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2 Optimistic bilevel parallel uniform machines scheduling

Assume we are given a set J of N jobs, each job j being characterized by its processing
time pj , weight wj and due date dj . We have a leader that manages the system health and
global scheduling and a CPS, composed of parallel uniform machines, which schedules the
jobs given by the leader. The leader aims to minimize the number of weighted tardy jobs
while the follower aims to minimize the total completion time. We consider the optimistic
case, i.e. the follower returns the schedule that leads to the minimum number of weighted
tardy jobs among schedules optimal for the total completion time. So, the bilevel problem
can be defined as:

min
I⊂J
|I|=n

∑

j∈σ∗
wjU

L
j

st.
σ∗ = argmin

σ∈SI


Lex


∑

j∈σ

CF
j ,
∑

j∈σ

wjU
L
j






(1)

where:

• SI is the set of schedules form of all jobs in I.
• CF

j is the completion times of the job j.

• UL
j =

{
1 if CF

j > dj

0 otherwise

• Lex
(∑

j∈σ C
F
j ,
∑

j∈σ wjU
L
j

)
stands for minimizing the first criterion

∑
j∈σ C

F
j first,

then the second criterion
∑

j∈σ wjU
L
j if there is a tie in the first criterion.

We assume that the leader periodically makes scheduling decisions every T units of
time. Prior to each period, the leader receives data from the shop floor. Using this data,
the leader faces three cases and makes related decisions:

• If one or more machines are not defective, the leader sets the machine speed to the
maximum, i.e. Vmax.

• If one or more machines are predicted to be defective, the leader reduces the machine
speeds to the minimal speed V0 to minimize the risk of breakdowns.
• If one or more machines are confirmed to be defective, the leader removes those ma-

chines from the follower for maintenance. The follower can no longer assign jobs to
these machines for the scheduling period.

Next, the leader selects a subset I ⊂ J of n jobs and assigns them to the follower. In
the follower’s problem, there is a lexicographical objective function. Initially, the follower
minimizes the total completion time and subsequently minimizes the number of weighted
tardy jobs.

Correspondingly, following the three-field classification (Graham et al. 1979), we denote
this bilevel problem as Q|Vi ∈ {V0, Vmax}, OPT − n|

∑
j C

F
j ,
∑

j wjU
L
j , while the related

follower problem is denoted as Q|Vi ∈ {V0, Vmax}|Lex
(∑

j C
F
j ,
∑

j wjU
L
j

)
.

3 Complexity and solution approaches

We show in the following section several complexity results (proofs are omitted and will
be presented at the time of the conference). With respect to the complexity of problem
Q|Vi ∈ {V0, Vmax}|Lex

(∑
j C

F
j ,
∑

j wjU
L
j

)
, the following theorem holds.
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Theorem 1. The problem Q|Vi ∈ {V0, Vmax}|Lex
(∑

j C
F
j ,
∑

j wjU
L
j

)
(and correspond-

ingly of problem Q|Vi ∈ {V0, Vmax}, OPT − n|∑j C
F
j ,
∑

j wjU
L
j ) is NP-hard in strong

sense by reduction from the numerical 3-dimensional matching (NUM − 3DM).

The answer to the NUM − 3DM problem is true iff all jobs can be scheduled on time
(
∑

j wjUj = 0), as a consequence, the problem is not approximable in polynomial or pseudo-
polynomial time unless P = NP.

When the number of machines m is not part of the input, we can already show that
problem P2||Lex

(∑
j C

F
j ,
∑

j U
L
j

)
isNP-hard by reduction from the well known even-odd

partition problem. To complete the complexity analysis, we can even prove the following
theorem by providing a dynamic programming pseudo-polynomial algorithm.

Theorem 2. Qm|Vi ∈ {V0, Vmax}|Lex
(∑

j C
F
j ,
∑

j wjU
L
j

)
with m constant are NP-hard

in the ordinary sense.

We remark, first, that problem Q||∑j Cj is polynomial (Conway, Maxwell, Miller 1967)
and that the algorithm we propose is based on a characterization of the set of solutions of
the problem Q|Vi ∈ {Vmax, V0}|

∑
j Cj .

Assume we have a set J of n jobs, letNmax (respectivelyN0) be the number of machines
with high-speed Vmax (respectively, with low speed V0). Assume that V0 divide Vmax. We
can show that an optimal schedule of the problem Q|Vi ∈ {Vmax, V0}|

∑
j Cj is given by

the repetition of patterns. In Figure 3, an illustration depicts a pattern consisting of α− 1
blocks on high-speed machines and one block on low-speed and high-speed machines. Jobs
within the blue-dashed group signify their membership to a block and can subsequently
undergo permutation without change the value of

∑
j Cj . Let us define Bh a block that

can be assigned to high-speed machines or low-speed machines.

M1

M2

...

MN0

V0

M1

M2

...

MNmax

Vmax

Blocks B1B2
. . .Bα−1Bα

. . . αNmax + 1

. . . αNmax + 2

. . . ...

. . . αNmax + N0

1

2

...

Nmax

. . . αNmax + N0 + 1 (α − 1)Nmax + 1 . . . Nmax + 1

. . . αNmax + N0 + 2 (α − 1)Nmax + 2 . . . Nmax + 2

. . . ...
...

. . . ...

. . . (α + 1)Nmax + N0 αNmax . . . 2Nmax

Shift on left

Fig. 1. Scheduling pattern with block structure for the optimal solution of Q|Vi ∈
{Vmax, V0}|

∑
j Cj

Hence, we know for all jobs j on which block Bh it is scheduled. Using this character-
ization, by extending the approach on parallel machines scheduling proposed in (Hall et
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al. 2001) to the considered problem, a dynamic programming recursion can be formulated
to solve Q|Vi ∈ {V0, Vmax}, OPT − n|

∑
j C

F
j ,
∑

j wjU
L
j by means of function OPT .

OPT (A⃗0, ⃗Amax, C⃗0, ⃗Cmax, j, n′) (2)

where:

• j is the job to add to the schedule under construction
• n′ the number of jobs that already scheduled
• C⃗α is the vector of completion times for the machines with the speed α
• A⃗α is the vector indicating at the current recursion the available machines with speed
α.

For each machine i we have A⃗α
i =





True if the job j can be schedule on the machine i
with the speed Vα

False otherwise

Here, OPT returns the minimal value of
∑n

k=1 wkUk when jobs {1, . . . , j} have been
scheduled and machines complete at times C⃗0 and ⃗Cmax. By computing
OPT ( ⃗True, ⃗True, C⃗0, ⃗Cmax, n) for all relevant C⃗0 and ⃗Cmax, the following lemma holds.

Lemma 1. A dynamic programing algorithm find an optimal solution for the problem
Q|Vi ∈ {V0, Vmax}, OPT − n|

∑
j C

F
j ,
∑

j wjU
L
j with the time complexity

O
(
4m
(∑

j pj

)m
×N × n2log(n)

)

In addition, a MIP can be formulated for the bilevel problem that will be presented in
details at the time of the conference.
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1 Introduction

Many complex scheduling problems are currently solved by academics worldwide in
order to increase the body of theoretical knowledge and improve their practical applica-
bility in the field of project management. However, the theoretical and practical focus of
research often conflict and academics decide to direct their research efforts into one of
the two directions. On the one hand, complex extensions of project scheduling problems
are investigated by relaxing unrealistic assumptions. Frequently, these extensions are de-
rived from company- or industry-specific cases and the collaboration with these companies
need to result in solution methodologies that are capable of solving large-scale instances
fast. As a result, many problem-specific (meta)heuristics are presented in the literature to
create high-quality (but suboptimal) solutions. On the other hand, state-of-the-art exact
approaches are continuously developed as the shared knowledge on effective solution ap-
proaches in the literature grows constantly and improved computational resources are made
available to researchers at an increasing speed. Unfortunately, these methods are typically
only capable of solving small-scale instances using long computational runs. A challenge of
academic research remains the development of better, yet practically applicable, methods
for complex and relevant scheduling problems.

In this study, a new application of an innovative solution approach is presented that has
a lot of potential for obtaining high-quality solutions for complex project scheduling prob-
lems. The resource-constrained project scheduling problem (RCPSP) is a standard problem
in the project scheduling literature that has been extensively studied in the last decades.
The aim is to provide a timetable with starting times for activities in the project subject
to limited resource availabilities and precedence relations between the activities such that
the project duration or makespan is minimised. A restrictive assumption in the RCPSP is
that the project network structure (i.e. the number of activities and their relations) and
the activity characteristics (i.e. the activity durations and resource requirements) should
be pre-defined and known prior to the project start. In practice, this might be impossible
because of the multi-year scope of many projects and the uncertain project environment.
Therefore, we will focus on an extension of the basic RCPSP, called the RCPSP with al-
ternative subgraphs (RCPSP-AS) in which subsets of activities, labelled work packages,
can be solved in alternative ways. A possible application of this problem is the existence of
alternative technologies that can be used to execute a certain subpart (or work package)
of the project in different ways, yet realising the same scope. As a result, the scheduling
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problem now consists of two subproblem: a scheduling and a selection subproblem. In the
selection subproblem, a specific (alternative) technology needs to be selected for each work
package, while the resulting selected activities need to be scheduled in the scheduling sub-
problem (which corresponds with the traditional RCPSP). The problem is introduced and
formulated by Servranckx and Vanhoucke (2019) and these authors present a tabu search
(TS) for solving the problem using problem-specific operators and an intelligent search
process guided by the project properties. Subsequently, Nekoueian et. al. (2023) present a
priority-rule based approach supported by an extensive search of different rules-of-thumb
and several constructive heuristics.

We aim to investigate the potential of a new solution approach, namely a metaheuristic
extended with a satisfiability (SAT) solver, for the RCPSP-AS. A boolean SAT solver is
an algorithm for establishing satisfiability of binary decision variables that are connected
by logical AND and OR relations. In order to solve the SAT problem, clauses need to be
constructed that combines variables and their complements using a series of logical OR re-
lations and these clauses are then combined through AND relations. To allow algorithmic
search processes checking the satisfiability, this boolean logic should be converted to a stan-
dard form, known as the conjunctive normal form. The logic of the SAT solver is perfectly
suited for solving the selection subproblem of the RCPSP-AS since binary decisions on the
inclusion (=1) or exclusion (=0) of activities need to be made. The scheduling subproblem
of the RCPSP-AS could also be solved using this logic since there already exist studies in
the literature that solve the traditional RCPSP with a SAT solver (Horbach 2010) given
that the time-indexed problem formulation uses binary decision variables to model the
start time of each activity. Due to the explosive growth in the number of resulting clauses,
however, these methods are typically only capable of solving small-scale instances. In this
study, we therefore follow the logic proposed by Coelho and Vanhoucke (2011) to integrate
the SAT solver into a genetic algorithm (GA) framework. More precisely, the GA is re-
sponsible for scheduling the activities, while the selection subproblem is assigned to the
SAT solver.

2 Problem description

In the RCPSP-AS, we distinguish between fixed activities that should always be selected
and scheduled, and alternative activities that could potentially be selected and scheduled.
The set of alternative activities that are interchangeable and thus belong to the same work
package is referred to as an alternative subgraph. Each subset of activities that together form
a specific alternative in the alternative subgraph is referred to as an alternative branch.
The objective of the RCPSP-AS is to select for each alternative subgraph exactly one
alternative branch such that the resulting precedence, resource and logical feasible schedule
has a minimal project makespan. However, two types of complex dependencies between
alternatives can be modelled.

– Linked alternative branches indicate that (part of) the activities in a single alternative
branch should be selected when another alternative branch is selected.

– Nested alternative subgraphs indicate that an entire alternative subgraph is triggered
(and the corresponding choice) by the selection of an alternative branch.

In order to illustrate the different concepts and terminology, we show an illustrative example
in Figure 1 where each curved line ’)’ marks a choice between alternative branches in an
alternative subgraph. We observe two alternative subgraphs with two alternative branches
each, of which one alternative subgraph is nested and one alternative branch is linked.
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structure with only a limited (negative) impact on the scheduling objective as a result. By
fixing alternatives in the project structure, we reduce the number of possible combinations
between alternatives and thus reduce the complexity in the selection subproblem. Our con-
tributions are threefold: (1) We present a technique to analyse the impact of alternatives
on the solution quality of project instances. (2) We analyse the impact of two criteria on
the reduction of the number of alternatives in the project structure. (3) We validate the
proposed technique on both artificial project instances and empirical case studies.

2 Problem description

In the RCPSP-AS, Servranckx and Vanhoucke (2019a) define alternative ways to exe-
cute a subset of interrelated activities in the project. Such a subset of activities is referred
to as a WP, called an alternative subgraph, and an alternative way to execute a WP is
called an alternative branch. For the sake of simplicity, we will refer to the former as work
packages and the latter as alternatives in the remainder of this abstract. The objective of
the RCPSP-AS is to select for each WP exactly one alternative such that the resulting
precedence, resource and logical feasible schedule has a minimal project makespan. In the
RCPSP-AS, two types of dependencies between alternatives are modelled. Linked alter-
native branches indicate that (part of) the activities in one alternative branch should be
selected when another alternative branch is selected. Nested alternative subgraphs imply
that the selection of one alternative branch from an alternative subgraph is triggered by
the selection of the enclosed alternative branch. Servranckx and Vanhoucke (2019a) de-
fine two parameters to model the dependencies between alternatives: the degree of linked
alternative branches (%linked) and the degree of nested alternative subgraphs (%nested).

1 2

3 4 5 6

7 8

Alternative branch

Alternative subgraph

Linked
alternative branch

Nested
alternative subgraph

Fig. 1. Illustrative example of the RCPSP-AS

In figure 1, we show a simple example to illustrate the different concepts. We observe
two alternative subgraphs with two alternative branches each, of which one alternative
subgraph is nested. For the sake of simplicity, each alternative branch only consists of two
activities in sequence. Each curved line ‘)’ in figure 1 marks a choice between alternative
branches in an alternative subgraph.

Fig. 1. Illustrative example of the RCPSP-AS

3 Methodology

Due to the interaction between the scheduling and selection subproblem in the com-
plex RCPSP-AS, the search for a (near-)optimal solutions is hard. As already discussed
before, metaheuristic frameworks are explicitly developed in order to solve such complex
problems fast. However, the search for better schedules (in terms of minimising the project
makespan) can be improved by slightly increasing the computational runtime in case that
the metaheuristic framework is extended with a SAT solver. The search process will be
decomposed, and a GA will be used for solving the scheduling subproblem and a SAT
solver for solving the selection subproblem. Both methods are iteratively called to solve
the RCPSP-AS and are briefly introduced below:

SAT: Several clauses will deal with the various combinations of alternative branches and
the complex relations between them. First, the choices in the previous iteration of
the method are reset by changing all variables to true. Then, a different subset of
activities can be selected in order to create a satisfiable solution. Clause learning ensures
that information obtained during earlier iterations is retained in order to improve the
efficiency of future iterations. It represents an integral part of any SAT solver since
this can avoid the occurrence of similar conflicts (i.e. unsatisfiability) throughout the
search process.

GA: The solution of the selection subproblem in the previous iteration provides activities
with a positive (or zero) duration in case the activity has (not) been selected. The
selection of activities has been logically checked such that such the successors of non-
selected activities also have a zero duration. Then, solutions are assigned to one of
two separate populations: the left population containing left-justified schedules and the
right population containing right-justified schedules (Valls et. al. 2005). The scheduling
process aims to improve the elements of both populations by iteratively combining
them using parent selection, crossover and mutation operators derived from Debels
and Vanhoucke (2007).

Finally, we also investigate the option to eliminate certain alternative branches in the search
procss by means of preprocessing. The resulting limited subset of alternative branches (i.e.
output of the preprocessing) will be used as input for the solution method. The aim is to
reduce the solution space and thus limit the computational complexity.
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4 Computational results and conclusions

In order to test this integrated GA with SAT solvers, we use a large-scale artificial
dataset (ASLIB-0) for the RCPSP-AS developed by Servranckx and Vanhoucke (2019)
using a controlled design based on flexibility parameters such as the degree of linked al-
ternative branches (%L) and the degree of nested alternative subgraphs (%N). The %L
and %N indicate the actual number of linked alternative branches and nested alternative
subgraphs relative to, respectively, the total number of alternative branches and subgraphs.

Based on the preliminary results, we can validate the good performance of the proposed
approach for the complex RCPSP-AS as it is competitive with and even outperforms exist-
ing metaheuristics developed for the problem. In Table 1, we observe that the performance
of the SAT solver performs better as more complex relations (links and nesting) are ob-
served to a certain degree, as its performance again lowers for high levels of complexity. For
low to medium levels of %N and %L, the added value of the clause learning is observed,
while the large number of these clauses hinders the search process in case of very high
levels of %N and %L. As expected, preprocessing has a negative impact on the overall
solution quality since part of the solution space is ignored. However, it is interesting from
a practical perspective that the increase in project makespan is rather limited. The exclu-
sion of some (potentially good) alternative branches implies that more computational effort
can be invested in finding good solutions for the remaining (smaller) set of alternatives.
The theoretical knowledge derived from this study will also contribute to further academic
developments in the field of (project) scheduling.

Table 1. Improvement (% Avg. makespan decrease compared to basic GA) for different levels of
%N and %L (with/without preprocessing)

%N Low Medium High
%L Low Medium High Low Medium High Low Medium High
Without preprocessing 1.95 5.70 3.35 1.85 5.97 4.02 1.90 4.08 2.95
With preprocessing 1.45 4.95 3.03 1.64 5.22 3.62 1.77 3.54 2.25
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1 Introduction

Many important resource provisioning problems in distributed computing are modelled
as vector bin packing, often with additional constraints. The case study we consider deals
with long-running applications (LRAs), which may occupy substantial capacity of cloud
data centres, see, e.g., (Garefalakis et al. 2018), (Liu and Yu 2018), (Verma et al. 2015). In
the underlying optimization models it is usually assumed that within a planning horizon
LRAs are allocated permanently, consuming a certain number of resources of di�erent
types: CPU cores, RAM, GPUs, etc. Planning resource allocation can be performed before
LRA deployment and it is aimed at minimizing the number of nodes to which LRAs are
allocated. This scenario gives rise to the vector bin packing problem (VBP), a generalization
of the bin packing problem which has been under study since the 70s.

In the VBP problem, there are n items I = {1, 2, . . . , n} and a set of bins. Each item
i ∈ I is characterized by a d-tuple of sizes sih in dimensions h = 1, . . . , d. The bins
are identical, with a given size ch for each dimension h. In the context of distributing
computing, bins represent compute nodes of a data centre, and dimensions h correspond
to speci�c resource types of a node. Items i ∈ I represent LRAs with their demands sih
in resources of type h. For example, si1 and si2 may represent the number of CPU cores
and the number of units of memory needed for LRA i. The demands of any LRA cannot
exceed the capacity of a node, i.e., sih ≤ ch for every LRA i and every resource type h.

In VBP, allocating a subset of items I ′ ⊆ I to one bin is feasible if

∑

i∈I′

sih ≤ ch for each h = 1, . . . , d. (1)

In the context of allocating LRAs to compute nodes, the total demand of all LRAs assigned
to the same node cannot exceed the node capacity in each dimension.

In our case-study, we explore construction heuristics for VBP (Section 2) and adjust
them for solving an enhanced version of the problem, typical for allocation LRAs to cloud
nodes (Section 3). In that version, there are multiple replicas of each LRA i ∈ I, which
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need to be deployed. A�nity restrictions are de�ned for pairs of LRAs which replicas can
be jointly co-located to the same node, but with some limits, or for pairs of incompatible
LRAs, which cannot be co-located. If LRA i is restrictive to LRA j, then there is an integer
a�nity value aij which sets up an upper bound on the maximum number of replicas of j
that can be co-located on a node where at least one replica of i is allocated.

The most recent surveys on approximation algorithms for VBP are presented in
(Christensen et al. 2017), (Epstein and van Stee 2018), while the main survey on heuristics
is (Panigrahy et al. 2011). In our work, we extend the algorithmic toolkit by grouping
heuristics of similar nature in a systematic way, compiling a comprehensive list of heuristic
parameters and developing new approaches. The VBP toolkit, which we call VectorPack, is
additionally adjusted and tuned for solving the a�nity-aware version of the VBP problem.
The talk is based on our papers (Mommessin et al. 2023a) and (Mommessin et al. 2023b).

2 Heuristics for VBP

There are two traditional classes of the VBP algorithms: item-centric and bin-centric,
which we discuss in Sections 2.1 and 2.2. Both approaches activate a new bin only if an
item cannot be allocated using bins, which have been already activated. An alternative
set of approaches outlined in Section 2.3 perform multi-bin activation and then attempts
to allocate the items exploring the whole pool of activated bins. Considering a series of
problems with di�erent target number of bins m, the aim is to �nd the smallest m for
which all items can be allocated.

The toolkit VectorPack is evaluated via computational experiments, providing guide-
lines for practitioners on selecting most appropriate algorithms depending on the features
of datasets.

2.1 Item-centric approach

The item-centric approach stems from the classical algorithms originally proposed in
the context of one-dimensional BP. Items are considered one-by-one and a current item is
allocated to the �best� bin selected according to specially de�ned rules.

The performance of an algorithm essentially depends on ordering of items and bins.
Since VBP is multidimensional, d-tuples of item sizes sih, 1 ≤ h ≤ d, are converted into
scalars v(i) which represent for every item i ∈ I its combined size. Similarly, d-tuples of
residual capacities of activated bins Bk ∈ B are converted into scalars v(Bk) representing
combined residual capacity v(Bk) for every bin Bk.

Using combined size measures for items and residual capacities of the bins, the items
and bins can be ordered. A current item i from the item list is allocated to the �rst bin,
which �ts that item, considering the ordered list of bins B. If no bin can accommodate i,
then a new bin is activated and added at the end of list B. Since every allocation changes
the residual capacity of the bin used, the ordering of list B requires updating after each
packing of an item.

Typical priority rules for ordering I and B were originally formulated for one dimen-
sional bin packing, and later on adopted for the multidimensional case of VBP, resulting in
the VBP versions of the famous algorithms First Fit, First Fit Decreasing, Best Fit, Best
Fit Decreasing, Worst Fit, Worst Fit Decreasing. Each of the six algorithms gives rise to a
family of the VBP algorithms, which depend on the way the size measures v(i) and v(Bk)
are computed. The expressions are based on `1, `2 and `∞ norms of h-tuples of item sizes
(si1, si2, . . . , sid) and h-tuples of bins' residual capacities, with specially de�ned weights wh

computed for dimensions h, 1 ≤ h ≤ d.
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2.2 Bin-centric approach

Bin-centric algorithms consider the bins one-by-one and �nd (heuristically) the most
promising items to be allocated to a current bin. The items for a current bin Bk are selected
according to item-bin scores ξik, which measure how well item i �ts into a current bin Bk.
The initial list of item-bin scores was proposed in (Panigrahy et al. 2011). We extend that
list by adding the expressions from most recent works and introducing two new item-bin
scores. We also incorporate weights wh, 1 ≤ h ≤ d, which can be kept static during the
execution of an algorithm, or updated dynamically.

2.3 Multi-bin activation approach

Multi-bin activation approach deals with a series of problems VBP(m), each with a �xed
value of available bins, all activated at the start. The trial values of m can be increased
in steps or enumerated via binary search, although the latter method has its pitfalls,
associated with non-monotone behavior of the algorithms.

For solving an individual problem VBP(m), we propose special adaptations of item-
centric algorithms, namely Worst Fit and Worst Fit Decreasing, and a new family of
pairing algorithms. The latter considers all feasible item-bin pairs when making allocation
decisions. Dealing with a large pool of bins is bene�cial for making better-informed decisions
compared to bin-centric and item-centric algorithms, which in every stage are limited to
one bin or to the current set of activated bins. This, however, incurs higher computation
cost.

2.4 Computational Experiments

The talk will discuss the outcomes of extensive computational experiments performed on
famous benchmark instances from (Caprara and Toth 2001) and (Panigrahy et al. 2011),
as well as on a new set of benchmarks. The experiments identify the most successful
approaches for each family of algorithms, depending on an instance type, and on the
choice of tuning parameters: combined size measures for items and bins, computation of
item-bin scores, and on the choice of the weights for dimensions. Further work can consider
randomized versions of the heuristics and analyze instance features for automated tuning
of heuristics and their parameters.

3 Adjusting VBP heuristics for a�nity-aware resource allocation in Clouds

The a�nity-aware version of VBP deals with replicas of LRAs, which are considered as
individual items, and with compute nodes, considered as bins. All algorithms outlined in
Section 2 require feasibility checks, which include verifying conditions (1) and conditions
incurred by the restrictions on co-location of LRA replicas. Whenever an algorithm con-
siders a possibility of allocating an additional replica of LRA i to a partially packed node,
it needs to verify for every LRA j, which replicas have been already allocated to the node,
whether the a�nity parameters aij and aji are not exceeded.

The expressions for combined size measures s(i) of replicas, combined size measured
of nodes' residual capacities v(Bk) and replica-node scores ξik are computed using the
range of expressions elaborated for the classical VBP, with changes mostly related to the
computation of weights wh for the dimensions. They take into account the demand of all
replicas of all LRAs in each dimension, as well the characteristics of LRAs that measure
their level of incompatibility. The latter is formalized as a vertex degree in a graph with
verticies corresponding to LRAs and arcs corresponding to a�nities.
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With a number of sophisticated tuning parameters, we obtain dozens of algorithms and
their versions for the a�nity-aware VBP problem. They are evaluated via extensive com-
putational experiments based on the Alibaba Tianchi dataset https://tianchi.aliyun.
com/dataset/6287 and on additional instances of similar nature, which di�er in densi-
ties of a�nity graphs, the numbers of LRAs and their replicas. The LRAs, which require
resources of two types, CPU and memory, have time varying resource demands. The plan-
ning horizon is split into 98 time slots, which, together with two types of resources, result
in the VBP problem with 98 × 2 dimensions. The number of LRAs varies in the range
10,000 - 100,000. Solutions of the highest accuracy are obtained by the multi-bin activa-
tion algorithms. Those algorithms ensure spreading of replicas over compute nodes, which
is particularly important for the problem with a�nity restrictions. The second successful
algorithm is Worst Fit Decreasing with specially computed weights for dimensions: it is less
accurate than multi-bin activation, but it has shorter running time. The known state-of-
the-art algorithms, LRASched (Cai et al. 2022) and (Garefalakis et al. 2018), are slightly
faster, but they produce solution of lower quality.

To summarize, the toolkit for VBP provides a solid foundation for developing new
enhanced methods for problems with advanced features arising in applications.
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1 Introduction

Agile project management (PM) is widely used (Özkan and Mishra 2019) but sprint
scheduling is challenging. We address sprint scheduling to maximize value under con-
straints. Prior work examines agile broadly (Raharjo and Purwandari 2020), but sprint
scheduling has received little focus. We define the problem and provide a simulator and
model.

We outline an agile simulator for interactive modeling. A mixed-integer linear program
(MILP) minimizes duration and cost. The model has iterative sprints, adaptive planning,
integration, and prioritization.

To our knowledge, this represents the first attempts to assist agile practitioners with a
decision support tool capturing:

– Iterative sprints incrementally delivering shippable product
– Embracing adaptive planning
– Frequent code integration
– Prioritizing backlog items by value

The paper is organized as follows. Section 2 describes the agile simulator for interactive
planning and learning. Section 3 formally defines the sprint scheduling problem and outlines
the MILP model.

2 The modeling tool—the agile simulator

The agile simulator has three major components: Scenario editing, sprint planning, and
sprint execution.

2.1 The scenario editor

The scenario editor is the tool by which new scenarios are created and existing scenarios
are modified. A scenario has several components:

Resources: Resources can be defined by type and instance. For example, an engineer
resource type may have experienced and new engineer instances. While both instances can
perform the same issues, the experiences engineer does so faster with higher capacity. The
resource editor screen (Fig. 1a) allows defining distinct resource types and instances with
differing capacities and costs. This supports modeling teams with members of varying skill
sets and levels.
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The example defines Engineer and Technician resource types. Engineer instances in-
clude a 5-year and 3-year experienced engineer with differing capacities measured in story
points - an abstract measure of complexity. Each instance also has an associated cost per
sprint. Sprints are regular iterative cycles to deliver working functionality. The resources
are limited, for instance 2 senior engineers vs 1 junior technician.

Epics: Epics represent large bodies of work broken into issues - concise user stories to
capture requirements. The example has 3 epics (Fig. 1b) comprising issues to be done by
the resources. Epics are comparable to work packages in traditional PM.

(a) Resource editor (b) Epics editor

(c) Issues editor (d) Results of a sprint simulation

Fig. 1. Resources, epics issues and sprints in the simulator

Issues, user stories or tasks: Issues link to required resources and have story point
size estimates reflecting the relative complexity. Issues may represent critical functionality
for the minimum viable product (MVP) or nice-to-have items. Issues concisely describe de-
sired features from an end-user perspective to capture requirements. The issues editor (Fig.
1c) allows defining these user stories as connected across epics, along with the resources
and estimates needed to realize them.

2.2 Planning a sprint

Sprint planning marks the start of each sprint, requiring collaborative planning to com-
mit to the upcoming work. The team decides which issues to include based on story point
estimates reflecting complexity. Proper assignment avoids overload or idle time. It priori-
tizes high value and must-have issues first. Capacity planning ensures a realistic workload
so the team can deliver on their commitments. Too many issues pressures completion while
too few causes unused capacity. The goal is to maximize value delivered each sprint within
resource constraints.
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2.3 Executing a sprint

Sprint execution involves actively developing user stories to deliver functionality within
the fixed sprint timeframe. The simulator introduces uncertainty by randomizing resource
capacity and issue effort based on distributions. It tracks progress - completed, started,
or not started issues. Outcomes include value generated, cost incurred, and over/under
utilized resources. This allows experimentation and insights into different plans. Fig. 1d
displays sample sprint simulation results on key metrics like cost, value, and issues status.

3 The scheduling problem

The planning goal is a two-stage process: (1) Deliver a minimum viable product (MVP)
as early as possible at minimum cost, (2) then maximize overall product value under budget,
deadline, and Stage 1 schedule constraints. Key decisions involve assigning resources and
issues to sprints. We formulate a mixed integer linear programming model (MILP) with
Stage 1 minimizing weighted duration and cost. Table 1 defines the parameters, variables,
and sets for the model including issues, resources, story points, costs, sprints, and more.

The optimization model, shown below, minimizes (1) a weighted combination of the
number of sprints (project duration) and total resource cost, subject to: (2) matching
resources and sprints to issue requirements, (3) limiting issue assignment to once, (4) en-
forcing resource capacity limits per sprint, (5) limiting resource usage per availability, (6)
linking assigned issues to sprints executed, (7) precedence constraints forcing predeces-
sor completion before an issue’s assignment, (8)-(10) constraints to define the auxiliary
variables zsrk connecting resource assignments to sprints.

Our current effort is focusing on modeling Stage 2 and to develop a reinforcement learn-
ing algorithm to solve it based on our previous work (Szwarcfiter et al. 2022, Szwarcfiter
et al. 2023a, Szwarcfiter et al. 2023b).

Table 1. Sets, parameters, and decision variables

Sets
M Set of must-have issues (part of the MVP)
Pi Set of predecessor issues that must precede issue i
Parameters
I Number of issues
S Upper bound for number of sprints
R Number of resource types
Kr Number of resource instances for resource type r
spi Story points for issue i
caprk Capacity (story points) of instance k, resource r per sprint
crk Cost of instance k, resource r per sprint
urk Number of units of instance k, resource r per sprint
reqir 1 If issue i requires resource type r, 0 otherwise
w1, w2 Weights to balance duration and cost, respectively
Decision variables
xsirk 1 if issue i assigned to instance k, resource r in sprint s, 0 otherwise
ys 1 if sprint s executed, 0 otherwise
zsrk 1 if instance k, resource r is assigned to sprint s, 0 otherwise
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Min

(
w1

S∑

s=1

ys + w2

S∑

s=1

R∑

r=1

Kr∑

k=1

crk · zsrk
)
, (1)

subject to:
R∑

r=1

Kr∑

k=1

xsirk = reqir · ys, ∀s = 1, · · · , S,∀i = 1, · · · , I, (2)

S∑

s=1

R∑

r=1

Kr∑

k=1

xsirk ≤ 1, ∀i = 1, · · · , I, (3)

I∑

i=1

spi · xsirk ≤ caprk · ys, ∀s = 1, · · · , S,∀r = 1, · · · , R, ∀k = 1, · · · ,Kr, (4)

I∑

i=1

xsirk ≤ urk · ys, ∀s = 1, · · · , S,∀r = 1, · · · , R, ∀k = 1, · · · ,Kr, (5)

xsirk ≤ ys, ∀s = 1, · · · , S,∀i = 1, · · · , I, ∀r = 1, · · · , R, ∀k = 1, · · · ,Kr, (6)
s∑

ς=1

∑

j∈Pi

R∑

r=1

Kr∑

k=1

xsjrk ≥
R∑

r=1

Kr∑

k=1

xsirk · |Pi|, ∀i : |Pi| > 0,∀s = 1, · · · , S, (7)

zsrk ≤ ys, ∀s = 1, · · · , S,∀r = 1, · · · , R, ∀k = 1, · · · ,Kr, (8)
xsirk ≤ zsrk, ∀s = 1, · · · , S,∀i = 1, · · · , I, ∀r = 1, · · · , R, ∀k = 1, · · · ,Kr, (9)

zsrk ≤
I∑

i=1

xsirk, ∀s = 1, · · · , S,∀r = 1, · · · , R, ∀k = 1, · · · ,Kr. (10)
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1 Introduction

Completing a project on time and within costs is one of the challenges of project
management. The management of projects at risk has been explored in the literature from
various angles and has led to many methodologies to better predict, manage and even
reduce risks. Many of these studies approach project risk from an activity point-of-view,
where variability in their durations (or costs) can impact the overall duration of the project.
The risks in the durations are usually modeled by probability distributions, and the risk is
imitated through simulation studies and examined how it affects the project performance
during project execution, and ultimately the final project status.

The current study will build on the insights from previous studies, but the risk will
be defined much more specifically than arbitrary probability distributions. In addition,
the interactions between risks (i.e., the occurrence of one risk is likely to trigger another
risk) are taken into account. More specifically, the project network (PN) will be linked
to a so-called risk interaction network (RIN) in which the risk is defined as a connected
set of possible disruptions that could impact parts of the project. This link between a
risk network and the activity network will be analyzed in detail using existing and new
sensitivity metrics that measure the sensitivity of activity variability to the total project
duration. An extended computation experiment is established to analyze whether these
metrics can facilitate the corrective actions that project managers need to take during
project execution.

2 Risk Model

2.1 Model

A double-layer network (PN-RIN) is constructed by linking a project network (PN)
and a risk interaction network (RIN) to model the interaction between the risks and the
activities of a project, as visualized in Figure 1. More precisely, a project is initially rep-
resented by an activity-on-the-node network consisting of activities between finish-to-start
precedence relations, namely project network. Then, the project risks and the interactions
between these risks (cause/effect relations) are identified and constructed as a risk inter-
action network, which is similar to the project network. Since each risk affects different
activities, the final step involves connecting the relationships between activities in the
project network and risks in the risk interaction network.
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Fig. 1. The PN-RIN Model

2.2 Schedule risk analysis

Schedule risk analysis (SRA) comprises three steps, namely constructing a baseline
schedule as a reference, defining uncertainty for activity, and calculating the sensitivity
metrics of each activity. An earliest start schedule is initially built based on the project
network using the well-known critical path calculation. Subsequently, the risks in the RIN
are served as the source of uncertainty for activity, and modeled by three different risk
concepts. The risk event can occur for no reason other than the random occurrence of the
event itself (risk spontaneous occurrence), but can also be triggered by the occurrence of
another risk event that is linked to the current risk event (risk propagation). Both events can
have an impact on the associated activities, causing delays and need for corrective actions
(activity delay). The dynamic process of risk spontaneous occurrence, risk propagation,
and activity delay are formulated and utilized as the basis for conducting the simulation
in the SRA metrics calculations. Finally, Monte Carlo simulation is employed to generate
real activity duration that is changed by the various simulated risk disruptions. After
sufficient simulations, the simulated data can be used to calculate various SRA metrics that,
depending on the calculation, reflect the sensitivity of the activities in different ways. In this
paper, five existing activity sensitivity metrics and a novel proposed metric are calculated
and compared. More precisely, the existing metrics include the criticality index (CI), the
significance index (SI), the schedule sensitivity index (SSI), the cruciality index (CRI,
three versions), and the management oriented index (MOI) (Van Slyke 1963, Williams
1992, Vanhoucke 2010, Madadi M. and Iranmanesh H. 2012). A novel SRA metric, the
risk contribution index (RCI), is designed based on the PN-RIN model to measure activity
sensitivity from a risk interaction point of view.

3 Control model

This section describes the general methodology to simulate project progress, where the
sensitivity metrics will be used to take corrective actions when the project is in danger of
slowing down resulting in delays and project failure.

3.1 Data generation

To compare the different sensitivity metrics, we tested our risk and control models on
a set of various artificial projects from the literature, which were linked to different types
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of risk networks. A series of parameters are selected to maximally vary the structure of the
project and risk networks, as shown in Table 1.

We have selected an existing dataset of project instances from Martens and Vanhoucke
(2019) which consists of projects with |N | = 30 activities, and the serial/parallel (SP)
values ranging from 10% to 100%, in steps of 10%. On the basis of the project network,
a network generator is designed and programmed to obtain the PN-RIN model with dif-
ferent structures. Specifically, the size and complexity of the risk interaction network are
determined by two indicators, namely risk quantity (RQ) and network density (ND). The
quantity of risks (RQ), equivalent to the number of nodes in the RIN, is set as several
times the number of activities. The network density (ND) is defined as the ratio of the
actual edges in RIN to the maximum number of potential edges in the network. With a
given risk quantity, the higher the network density, the more risk interactions exist in the
RIN. Considering the difference between activities in the number of risks impacting each
individual activity, the risk uniformity (RU) is designed to measure the evenness of risk
amounts among activities. In the experiment, each combination of parameters, as shown
in Table 1, contains 100 projects. As a consequence, 19,200 (= 4×3×4×4×100) PN-RIN
models are generated and tested in the experiments.

Table 1. Parameters level

Network structure Parameter Values
Project network Serial/ Parallel network (SP) 0.2, 0.4, 0.6, 0.8
Risk interaction network Risk quantity (RQ) 2×|N |, 4×|N |, 8×|N |

Network density (ND) 0.2, 0.4, 0.6, 0.8
Links between networks Risk uniformity (RU) 0.2, 0.4, 0.6, 0.8

3.2 Simulation with corrective actions

During the project execution, the project manager should determine the SRA metric for
activity sensitivity assessment, select the activity for corrective actions and take corrective
actions on the selected activity. The efficiency of the SRA metric is tested in measuring the
impact of the risks of the activity on project duration. Subsequently, three activity selec-
tion strategies are examined, namely interventive strategy, preventive strategy, and hybrid
strategy. More precisely, the interventive strategy takes actions on the ongoing activities to
mitigate the impact of the risks occurring in the ongoing activities. The preventive strategy
focuses on future activities that not start yet, aiming to prevent their potential risks. In
the hybrid strategy, both ongoing and future activities are considered. In addition to select-
ing the activity that should be taken actions, decisions still need to be made about when
and how to perform the corrective actions. Accordingly, the periodicity and the control
intensity of the actions are considered and tested.

3.3 Project output performance

As the goal is to reduce the project duration, time effectiveness is employed to evaluate
the performance of corrective actions, which has been introduced by Martens and Van-
houcke (2019). The time effectiveness calculates the ratio between average delay reduction
due to actions (Delayno −Delayyes) and the average delay without actions (Delayno), as
shown in Eq. 1.

Time effectiveness =
Delayno −Delayyes

Delayno
(1)
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4 Results

First, the overall results show that the proposed RCI metric outperforms the existing
sensitivity metrics in steering project control. The time effectiveness of corrective actions
using the novel RCI metric is highest, followed by the SSI and MOI metrics. In addition,
the sensitivity metrics are more beneficial for projects with more parallel activities. With
the increasing SP value, the RCI exhibits a marginal decrease, in contrast to the steep
declines observed in other metrics. It indicates that the RCI is more reliable than other
metrics in determining sensitive activities to take corrective actions for different project
network structures under risk interaction. Moreover, at the same size of risk interaction
network, the superiority of RCI becomes more significant as the density of risk interactions
increases (referred as to ND). This illustrates how important it is to also incorporate the
indirect impact of risk (risk events triggered by other risk events) on the project duration
into measuring activity sensitivity under risk interaction, something which is completely
ignored by the other sensitivity metrics (like SSI and MOI).

Subsequently, the overall results show that the use of the hybrid strategy results in
better time effectiveness regardless of the project network structures. Moreover, on average,
the time effectiveness of actions increases with the growing control intensity of action, which
conforms to the intuition. However, in some projects characterized by low or medium
complexity in the RIN, the effect of the actions with low control intensity can rival that of
the actions with high control intensity. This can be explained as follows. In these projects,
the corrective actions with low intensity can mitigate the major risks of sensitive activities
that have both direct impact and indirect impact on project delay, cutting the key paths
of risk propagation in RIN, and thus, significantly decreasing the occurrence probability
of project risks. The slack of activity can counteract the impact of risks remaining in the
activities.
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1 Introduction

In project-based industries, such as the construction industry, having cost-efficient
project schedules is essential to allocate resources for the lowest cost possible. Conven-
tionally, project and personnel scheduling are performed separately in sequence. However,
in previous research, we show that scheduling these two sequentially may not be the most
cost-efficient way. While integrated project and personnel scheduling using mixed-integer
programming (MIP) models has shown promising results, many of the instances consid-
ered are too complex for commercial MIP solvers. In fact, in several cases, the solver is
not even able to find feasible solutions before it is terminated after three hours. Therefore,
we present an adaptive large neighbourhood search (ALNS) procedure to address these
challenges.

Our work aims to build upon these findings by comparing solutions obtained from the
MIP solver and our ALNS procedure. In addition, we want to explore whether there is
any improvement of fixing project schedules and initialising the solver with the best ALNS
solutions. This is of particular interest for the instances in which the MIP solver finds no
feasible MIP solutions within a three-hour time limit.

Although the integrated project and personnel scheduling has not received the same
attention in the literature compared to the project scheduling and personnel scheduling
problems (Maenhout and Vanhoucke 2017), there are some papers that apply heuristic
solution methods to solve the integrated problem. For instance, Kolisch and Heimerl (2012)
introduce a hybrid heuristic approach that utilises a genetic algorithm followed by a tabu
search. Moreover, Van Den Eeckhout et al. (2019) propose an iterated local search (ILS)
procedure. Their perturbation procedure is based on both randomisation and the solution
quality of the previous solutions, and their acceptance criterion is based on hill climbing.
Furthermore, Cordeau et al. (2010) introduce an ALNS procedure to schedule technicians
and tasks in a telecommunications company.

2 Problem description

This paper addresses the integrated project and personnel scheduling problem for mul-
tiple projects at different locations. Each project involves scheduling various preemptive
activities, each with multiple modes and potential precedence constraints. These activities
require personnel with specific skills, and equipment to be completed. The activities are
subject to earliest- and latest-start time windows. Additionally, projects must be finished
by a given deadline.

To satisfy the activities’ personnel demands, we allocate personnel that are available
from both a limited internal and an unlimited external source. Internal employees are
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multi-skilled, while external employees possess one skill only. Both internal and external
employees are allocated to work in non-overlapping stints that respect labour regulations.
A stint is a set of working days and off days that an employee is assigned to. For instance,
if we have a 12–9 stint, the employees work 12 days before they have 9 days off. Each
stint is associated with one project. The costs of scheduling an employee for a specific stint
are influenced by travel and accommodation considerations, which come from the varying
distances between employees’ home locations and the respective project sites. Furthermore,
equipment, either owned or rented, must be allocated to activities. Also, internal equipment
needs to be transported between the activities.

The objective is to minimise overall costs, including salaries to internal employees, costs
related to hiring external personnel, preference violation costs, equipment transportation,
and costs for renting external equipment. Decisions include activity scheduling, personnel
allocation to stints, equipment transportation, and renting of external equipment.

3 Solution methods

The adaptive large neighbourhood search (ALNS) procedure is first presented in Røpke
and Pisinger (2006). The ALNS is an extension of the large neighbourhood search (LNS)
procedure proposed in Shaw (1997). In contrast to many other neighbourhood-based meta-
heuristic procedures, the neighbourhoods of the LNS and ALNS are not defined explicitly.
Rather, they use destroy and repair operators. The LNS uses only one of each, while the
ALNS can include several destroy and repair operators. What makes the ALNS an adaptive
procedure is that it chooses the destroy and repair operators based on all the operators’
performance in previous iterations. The better the operators perform in previous iterations,
the more likely they are to be chosen in the next iteration. Our ALNS implementation con-
sists of 28 destroy operators and 15 repair operators designed to improve various parts and
structures of the current solution. The destroy operators are divided into four categories,
which consists of destroying the activity schedules, the employee allocations, changing the
modes of one or more activities, and removing the equipment allocations. To repair the
destroyed solution, we have three types of repair operators that repair the activity sched-
ules, allocate employees to meet the personnel demands, and allocate equipment to fulfil
the equipment demands. The initial solutions used by the ALNS are found using a greedy
construction heuristic.

In addition, we provide the solutions generated by our ALNS to the MIP solver using
two different solution methods that we call the fixed-projects and warm-start methods.
The fixed-projects approach is a method where the project schedules determined by ALNS
are fixed, while the MIP solver optimises the allocation of personnel and equipment. This
strategy uses the scheduling capabilities of our ALNS to find a good initial schedule, upon
which the MIP solver efficiently allocates the resources. By narrowing the MIP solver’s
focus, this approach can significantly enhance the overall efficiency and effectiveness of the
problem-solving process.

Warm-starting the MIP solver with an initial solution from ALNS is a technique de-
signed to begin with an already promising solution, rather than starting the search from
scratch. This approach enables the MIP solver to search for improved solutions more ef-
fectively since the ALNS solution is more likely to be closer to the optimal solution than
the first feasible solution found by the MIP solver.
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Fig. 1. Gap comparisons by aggregation pattern

4 Computational study and results

Both a mixed-integer programming (MIP) model and an adaptive large neighbourhood
search (ALNS) procedure have been formulated and implemented, respectively, to solve
this problem. The implementation of the MIP is written in Xpress Mosel and solved using
the Xpress Optimizer, while the ALNS is implemented using C++.

The MIP solver is executed for a maximum duration of three hours for each instance,
while the ALNS is terminated after five minutes have passed. Moreover, the ALNS is run
twelve times for each instance in parallel threads. Also, we check whether fixing the best
project schedules from the ALNS and warm-starting the MIP solver with the best ALNS
solutions yield better results. As the ALNS is run for five minutes before we start the
fixed-projects and warm-start approaches, the maximum computation time for the MIP
solver is set to two hours and 55 minutes.

Both the MIP solver and the ALNS have been tested on 1,500 instances of various
sizes based on the dimensions of the number of projects (p), employees (w), days (d),
pieces of equipment (e), and modes (m). For the results, we use aggregation patterns to
indicate which instances we are aggregating. For example, “p-w-d-e-m” gives the average
over all instances, while “1p-w-d-e-m” is aggregating all the instances with one project.
We measure the performance by using the gap1 between the primal and dual bounds. In
cases a solution method does not find any feasible solutions, the gap is set to 100%.

In Figure 1, we see that the MIP on average yields the highest gaps in all aggregations
apart from the one-project aggregation, mostly because the MIP solver mainly finds optimal
solutions for the instances with one project. Furthermore, for the majority of instances
involving five and ten projects, the MIP solver fails to find any feasible MIP solutions,
negatively impacting the aggregated averages. Apart from the one-project aggregation,
the ALNS yields lower optimality gaps on average than the MIP solver for both the best
and average objective value aggregations. On the whole, the best ALNS solution for each
instance roughly halves the optimality gap when compared to the MIP solution from the
solver This shows that the ALNS is able to find relatively good solutions in a short time.
Also, presenting the best ALNS solution for each instance to the MIP solver improves
the solution further by either fixing the projects from the solution or warm-starting the
solver using the solution. As we can see from the aggregations in Figure 1, the warm-start
approach has consistently the lowest average gaps based on these specific aggregations.

1 We define the gap to be Gap = 1− Best dual bound from MIP
Best solution .
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Looking at the overall distribution of the best solutions across the different methods,
the warm-start approach accounts for approximately 48%, the fixed-projects approach for
30%, and the MIP formulation for the remaining 22%. Consequently, even though it finds
relatively good solutions in only five minutes of execution, there are no instances in which
the ALNS finds the best solution. This can be explained by the fact that both the fixed-
projects and warm-start approaches are improving the solutions provided by the ALNS.
Although the MIP formulation finds the best solutions in 22% of the instances, notably in
the instances with one project, as shown in Figure 1, and is able to prove optimality in 25
of the instances, it remains the only method that does not find any feasible solutions in 361
of the instances. The warm-start method does not find more optimal solutions beyond the
same 25 instances as for the MIP, while the fixed-projects approach identifies ten optimal
solutions. As the ALNS does not find any optimal solutions, albeit some are very close,
this indicates that ten of the ALNS solutions have the optimal project schedule but not
the most cost-efficient allocation of personnel and equipment. When it comes to execution
times, both the MIP formulation and the warm-start approach on average spend mostly all
the three allocated hours. In comparison, the longest time for the fixed-projects approach
is one hour and forty minutes, having an average time of eight minutes, which includes five
minutes of running the ALNS, and the ALNS always terminates after five minutes.

5 Concluding remarks

This study presents a problem for the integrated project and personnel scheduling in
project-based industries, such as the construction industry. As the previously formulated
MIP struggles to find feasible solutions for 24% of the instances, an ALNS procedure is
proposed. This approach not only provides feasible solutions to all the 1,500 instances
under study but also allows for further comparisons with the computed MIP solutions.

We find that our ALNS is a promising tool for finding good solutions to the integrated
project and personnel scheduling problem efficiently. Introducing the ALNS solutions to
the MIP solver, either by fixing the project schedules from the ALNS before re-optimising
the resource allocation or to warm-start the solver, further improves the solutions. While
both strategies offer ways to improve the initial ALNS solutions, they require additional
time after the ALNS is terminated. Particularly for the fixed-projects approach, while it
generally does not add much more time, there is a possibility the scheduler might have to
wait more than an hour to find the optimal fixed-projects solution.
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1 The scheduling problem

In this paper we consider a resource-constrained project scheduling problem in which
there are uncertain task durations as well as minimum and maximum time lags between
pairs of tasks. We do not assume any distribution of task durations. We focus on a special
case with the following key features. There is a finite set of resources R1, . . . , Rm, and
the capacity of Rk is ck > 0. There are n identical jobs J1, . . . , Jn, where each job Ji
is a sequence of ` tasks, Ti,1, . . . , Ti,`. The resource requirements of Ti,j is given by the
vector ρj ∈ Rm

≥0 for j = 1, . . . , `, and it does not depend on the job, since the jobs are
identical. Each task has a fixed duration, except for the tasks Ti,`−1, which have an interval
of possible durations. That is, for j ∈ [[`]] \ {` − 1}, the common duration of all the tasks
{Tij : i = 1, . . . , n} is dj , a positive number, whereas the duration of the Ti,`−1 is specified
by an interval [dmin

`−1, d
max
`−1 ], meaning that the duration of Ti,`−1 can be any number between

the given lower and upper bounds, and may be different for each i. The tasks of each job Ji
are connected by end-to-start precedence constraints, that is, Ti,j+1 can only start if Ti,j
is completed. The minimum time lag between Ti,j and Ti,j+1 is 0, and the maximum time
lag is also 0, except for the last pair, i.e., between Ti,`−1 and Ti,`, where it is a common
non-negative number ∆. Finally, each job Ji has a job-dependent release date ei ≥ 0.

Since the tasks Ti,`−1 have uncertain durations, and we also have maximum time lags, it
is not possible to determine the starting times of the tasks in advance, in general. Instead,
the starting times will be determined incrementally by a scheduling policy, which takes into
account the realized durations d̃i,`−1 ∈ [dmin

`−1, d
max
`−1 ] of the uncertain-duration tasks. Notice

that d̃i,`−1 becomes known only upon completing Ti,`−1. Let Si,j be the starting time of
task Ti,j determined by the policy. Then the Si,j have to satisfy the following constraints:

– Si,1 ≥ ei for each job Ji,
– Si,`−1 + d̃i,`−1 ≤ Si,` ≤ Ci,`−1 + ∆ for each Ji, where Ci,`−1 = Si,`−1 + d̃i,`−1 is the

completion time of Ti,`−1,
– Ci,j = Si,j+1 for j = 1, . . . , ` − 2 for each Ji, where Ci,j = Si,j + dj is the completion

time of Ti,j , and
– For any time point t ≥ 0, let At be the set of tasks being executed at time t, i.e.,
At = {Ti,j | Si,j ≤ t < Ci,j}. The capacity constraints

∑
Ti,j∈At

ρj ≤ c are satisfied for
any time t ≥ 0.

To define the objective function, we need one more notion. The waiting time of a job Ji
is the total time between ei and Ci,` where no task of the job is processed, i.e., Wi =
(Si,1 − ei) + (Si,` − Ci,`−1). The objective is to minimize

∑
iWi

Our main goal is to give a policy that determines the start times of the tasks according
to the incrementally changing schedule. Taking the jobs one-by-one in release date order,
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we determine the earliest time point t for the current job with the property that starting
the job at t, no matter what the realized durations of the previously scheduled uncertain
tasks are, the resource constraints and time lag constraints are always met. At each decision
point (i.e. when a task with uncertain duration finishes), we update the schedule according
to the realized task durations and update the start time of the not-yet started jobs.
Motivation from practice. A possible domain of applications is bio-manufacturing, where
some processes have large uncertainty in their duration. For instance, the production of
CAR T cells for personalized gene therapies of patients with a serious disease. In such
a therapy, white blood cells of the patient are genetically modified and returned to the
patient. The production process consists of a number of steps, where the penultimate one
is cell expansion, where millions of CAR T cells are grown in a cell culture (June et.
al. 2018), and the duration of cell expansion may vary from patient-to-patient. In addition,
the variance of cell expansion time may be several days, while the other production steps
are deterministic and take a couple of days (Bäckel et. al. 2023).
Numerical example. Suppose we have four identical jobs J1, . . . , J4. Each job Ji is a sequence
of 4 tasks (Ti,1, Ti,2, Ti,3, Ti,4). Ti,j must be started without any delay after the completion
of Ti,j−1 for j = 2, 3, and Ti,4 must be started after the end of Ti,3 at most ∆ = 2 time
units later. The tasks Ti,1, Ti,2 and Ti,4 have a duration of 1,2 and 3, respectively, while
Ti,3 has uncertain duration in the interval [2, 5]. We have two resources, R1 with capacity
3 and R2 with capacity 2. For each job Ji, Ti,1 and Ti,3 require one unit from R1, and
Ti,2 and Ti,4 require one unit of R2. Without loss of generality, the jobs are scheduled
in increasing index order. Our policy selects the earliest starting time for each job such
that under any realizations of the uncertain task durations, the schedule remains feasible.
The selected earliest starting times are 0, 0, 4, and 10. The Gantt chart below depicts the
solution constructed at time 0.

t0 5 10 15 20

J1

J2

J3

J4

min dur max durT1,1 T1,2 T1,3 T1,4

Both of J1 and J2 can be started at 0, since each resource has a capacity of at least
2. Job J3 cannot be started earlier than 2, since T1,2, T2,2 and T3,2 cannot be executed
in parallel because the capacity of R2 is 2. It cannot be started at 2 or 3, otherwise if
the realized duration of both T1,3 and T2,3 is 5 and that of T3,3 is 2, then, since T1,4, T2,4
and T3,4 cannot be all executed in parallel, at least one of J1, J2 and J3 would violate
the maximum time lag constraint. It is not difficult to check that any realizations of the
uncertain task duration permit starting J3 at 4, therefore its earliest starting time is 4.
Similar reasoning shows that the earliest starting time of J4 is 10.

Now suppose the uncertain tasks T1,3 and T2,3 both complete at time 5. Then, the
schedule is updated as shown in the Gantt chart below. As we can see, job J4 can be
started earlier.

J1

J2

J3

J4

t0 5 10 15 20

T1,3 T1,4

T3,2

Related work. The literature on project scheduling with minimum and maximum time lags
combined with uncertain task durations is rather scarce. Fu et. al. (2012) consider stochastic
local search to minimize the expected project duration and they note that the failure rate
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of their method increases as the maximum time lags between the tasks diminish. Research
on stochastic project scheduling, or project scheduling with minimum and maximum time
lags is abundant. For instance, Rostami et. al. (2018) propose a new stochastic scheduling
policy which after some preprocessing, makes the final decisions online as the project
progresses. However, no maximum time lags between pairs of activities are permitted.
Davari and Demeulemeester (2019) considered a variant where the possible realizations of
task durations are vectors that constitute a finite set of scenarios, and each scenario has
a probability. The authors propose four models for solving the problem. There are many
approaches for solving RCPSP/max either exactly, or heuristically Kreter et. al. (2016).
Main results. (i) We describe an iterative algorithm for constructing a robust schedule.
The schedule is feasible for any realization of the uncertain task durations within the given
limits, and at the same time each job starts as early as possible relative to the schedule
of previous jobs; (ii) We prove that our method is of polynomial time complexity. This
is a striking result as robust scheduling problems may well be beyond the class NP, the
class of decision problems which admit polynomial size certificates that can be checked in
polynomial time. (iii) To measure the efficiency of our method, one can compare its waiting
time to the offline optimum, i.e. the total waiting time of the best schedule for the problem
where the duration of every task is known in advance. We have shown that our problem
does not have an approximation algorithm of constant approximation ratio.

2 Main results

In this section we give an overview of our scheduling policy and its properties. We have
a set of jobs J1, . . . , Jn, with release dates e1 ≤ · · · ≤ en. The initial part of any job consists
of the first `− 1 tasks. Our method for completing all the jobs goes as follows:

Proactive-Reactive Method

1. Compute an initial schedule S using Robust Scheduling Algorithm.
2. Execute the tasks in S until an uncertain task or all the job get completed.
3. If all the jobs are completed then STOP.
4. Recompute the schedule S using Robust Scheduling Algorithm, and proceed with

Step 2.

The crux of the method is the Robust Scheduling Algorithm which takes as input
the current state of the system, and outputs a new schedule. The state of the system is
described by the set of completed tasks, their completion times, and the starting times of
those tasks that are being executed at the moment the scheduling algorithm is invoked.
The schedule specifies a starting time for each not-yet-started task except for those last
tasks, where their preceding uncertain task (of the job) is not completed. The algorithm
processes the jobs which are not started yet in non-decreasing release date order, and deter-
mines the earliest starting time of each job in turn in polynomial time. Finally, it provides
the starting times for the last tasks of those jobs which admit a completed uncertain task.

Robust Scheduling Algorithm
input: status of the jobs, and current schedule S.
output: updated schedule S′.

1. Let Ju be the subset of those jobs not started yet, and Jc the subset of those jobs
where the uncertain task is completed, but the last task is not started yet.

2. Process the jobs of Ju in non-decreasing release date order. Let Ji be the next job to
be processed.
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3. Determine a set Λi of possible starting times for Ji.
4. Process the time points in Λi in increasing order. Let t be the next time point to be

verified.
5. Check if Ji can be started in t such that no resource and maximum time lag constraints

are violated for any choice of the duration of the uncertain tasks which belong to some
job in S and also that of Ji. If the answer is YES, then fix the starting time of Ji at t,
and add to S the initial part of Ji. Otherwise proceed with the next time point in Λi.

6. Extend S by the last tasks of the jobs in Jc.

In Step 5, the procedure for checking if Ji can be started at time point t is of polynomial
time complexity, and boils down to scheduling the last tasks greedily after setting the
durations of the uncertain tasks. The main point is that the set of task durations to
be verified is of polynomial size in the input, and depends only on the schedule of the
fixed duration tasks in S, and determining this set takes polynomial time. Finally, the
computation of the set Λi also takes polynomial time. Hence, we have the following result:

Theorem 1. The Robust Scheduling Algorithm constructs a schedule in polynomial time
which is feasible for any realization of the uncertain task durations within the given limits.
Moreover, each job starts as early as possible relative to the previously scheduled jobs.

3 Final remarks

Our Proactive-Reactive method can also be used in an online scenario, where the jobs
arrive one-by-one at their release dates. This is indeed our main application area. However,
the method is suitable to handle this problem, since it schedules the jobs in non-decreasing
release date order. In future work we aim to compare our method to stochastic ones, where
some distribution of task durations are known, and which can take, at least in principle,
maximum time lag constraints into account.
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1 Introduction

Industrial projects often face cost and time overruns due to uncertainties (De Meyer
et al. 2002). Furthermore, almost half of all projects fail to satisfy stakeholders by not
delivering the expected value (The Standish Group 2015). To address these challenges, this
research puts forth an innovative reinforcement learning (RL) based approach to balance
project schedule, cost, and value under uncertain activity durations.

Project value is determined by multiple attributes that represent the extent to which the
project meets stakeholders’ needs and expectations. These attributes may include scope,
quality, reliability, aesthetics, features, functions, size, availability, and more. Value pa-
rameters associated with each project activity capture its contribution to overall value.
For example, in a radar system project, value attributes can be range, quality, and relia-
bility. The project value is a weighted sum of the value attributes. The selection of modes
for each activity directly impacts the value parameters and thus the overall project value.

The research introduces models and algorithms to tackle three distinct project man-
agement problems that aim to create stable and robust project baseline schedules:

1. Lean project management (LPM) to maximize value while meeting chance constraints
for schedule and budget.

2. Chance-constrained critical chain buffer management (CCBM) to minimize project
delivery time.1

3. Tradeoff between project value and net present value (TVNPV) to optimize weighted
achievement of both objectives.

Together, these problems cover the interrelated aspects of overruns, value shortfalls,
and scheduling delays plaguing projects.

2 Novel Contributions

The research offers several key contributions:

• New LPM, CCBM, and TVNPV models with chance constraints and stochastic activity
durations.
• An LPM model maximizing value under chance constraints (first such formulation,

Szwarcfiter et al. 2022).
• A direct chance-constrained approach for CCBM (new to literature, Szwarcfiter et al.

2023b).
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• Joint optimization model for project value and robust NPV (new concept, Szwarcfiter
et al. 2023a).
• RL heuristics to solve the models (innovative application).
• Efficient frontiers showing tradeoffs between objectives for decision-making.

3 Solution Methodology

The study utilizes a Monte Carlo control RL method leveraging simulation (refer to
Sutton and Barto 2018 for the RL terms employed in this paper). Chance constraints
are handled via a scenario approach (introduced in Calafiore and Campi 2005) to tackle
uncertainty. This involves:
1. Generating N samples or scenarios to represent possible outcomes for the random

activity durations in the chance constraints.
2. Replacing the deterministic constraints with their scenario-based counterparts. For

example, the due date constraint becomes a set of N constraints, one for each scenario.
3. Ensuring the proportion of scenarios that satisfy the probabilistic constraints meets

the desired levels. For example, if the desired on-time probability is 95%, at least 95%
of the N sampled scenarios must finish within the due date.

4. Solving the resulting mixed-integer linear program with the scenario-based chance con-
straints.

In this way, the SA method transforms a stochastic optimization model with chance con-
straints into a deterministic equivalent that can be readily solved by standard solvers.

The RL framework begins by placing an agent in a state S, which represents a project
activity. The agent takes an action A, which involves selecting a mode m̂j and additionally,
in the CCBM and TVNPV cases, a start time t̂j for activity j. The agent then transitions
to the next state S′ and receives a reward R′. This pattern continues as the agent goes
through each activity. The objective is to learn a policy π(S,A) to maximize cumulative
reward. An action-value function q(S,A) estimates the expected reward for taking action
A in state S.

For the LPM problem, the reward R is the project value if the solution meets the
chance constraints; otherwise, R = 0. For CCBM, R is proportional to 1

project delivery time .
For TVNPV, R is the weighted objective function value.

The RL algorithm has an initialization phase where optimistic action values encourage
exploration. Then in each iteration:
1. Calculate an ε-greedy policy π using the action values q
2. Follow policy π to select modes m̂j and times t̂j
3. Compute reward R for the selected actions
4. Update action values q using the reward R
5. Repeat until convergence

Two action value update rules are used. The first averages all rewards obtained when
selecting a mode. The second uses constant step size to give more weight to recent rewards.

4 Experiments

The models and algorithms were tested on standardized PSPLIB (Kolisch and Sprecher
1997) and MMLIB (Vanhoucke and Coelho 2018) datasets. Duration uncertainty was mod-
eled via 3-point estimates. Comparative analysis used:

• LPM: Genetic algorithm and mixed integer linear program (MILP).
• CCBM: Priority rules and MILP.
• TVNPV: Tabu search and MILP.
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5 Key Results

The RL methods proved effective, outperforming benchmarks in multiple experiments.
The main findings include:

• RL generates higher project value than genetic algorithms.
• Solving chance-constrained CCBM yields shorter schedules.
• RL delivers competitive CCBM solutions vs. heuristics and MILP.
• RL determines efficient project value vs. NPV tradeoffs.

6 Implications and Future Research

The models and methods equip managers to balance objectives under uncertainty. Plot-
ting efficient frontiers facilitates focused decision-making. Fig. 1 depicts an example effi-
cient frontier for LPM. Fig. 2 shows an efficient frontier for TVNPV, where the robust

Fig. 1. LPM efficient frontier

NPV (rNPV) refers to the project NPV that is achieved with a likelihood of at least the
minimum probability threshold set by the decision makers. Proposed RL enhancements
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include scaling with approximation methods.

7 Conclusion

The study introduces new models advancing project value, scheduling, and risk manage-
ment. RL demonstrates applicability for these problems, despite limited use thus far. The
findings offer promising directions to support planning and optimization in project-centric
operations.

Notes

1The project delivery time refers to the overall time-buffered project duration that includes
the baseline schedule, activity durations, and project buffer. By minimizing this duration subject
to the chance constraint of meeting the desired on-time probability, we directly search for the
shortest robust schedule.
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1 Introduction and related work

High-energy prices are driving industries to consider energy efficiency as an important
metric to evaluate their performance. Researchers on the other hand, have developed meth-
ods to treat energy efficient scheduling problems. The relevant literature for our work lays
in the intersection between two main elements: scheduling problems and energy efficiency.
Hybrid and flexible flow shop scheduling problems are very common in the industry. When
combined with a multi-line system, they may offer more flexibility and improve the pro-
duction capacity of the manufacturing system. Energy efficient hybrid flow shop scheduling
problems have been addressed in the literature using exact methods and meta-heuristics
(Schulz et. al. (2019)). Li et. al. (2018) proposed a heuristic with the goal to minimize total
energy consumption and the makespan for a hybrid flow shop scheduling problem. Gong
et. al. (2020) suggested a meta-heuristic to tackle human and energy efficiency indicators
for a flexible flow shop problem. In this paper, we treat a new scheduling problem which
is an extension of a hybrid flow shop scheduling problem with energy considerations. To
the best of our knowledge, there is a very limited available literature regarding energy
efficient multi-line hybrid flow shop scheduling problem and was treated for the first time
in Taguemount et. al. (2023). Another scheduling problem that may be assimilated to a
multi-line hybrid flow shop is the distributed hybrid flow shop. Meta-heuristic algorithms
have been widely proposed to solve distributed hybrid flow shop scheduling problems for
their performance in solving industrial instances and in generating quality solutions in a
reasonable computing time. Lu et. al. (2021) developed a heuristic for the optimization of
total energy consumption and the makespan for a distributed flow shop scheduling prob-
lem. Wang and Wang (2022) tackled energy efficiency within a distributed hybrid flow
shop system by optimizing total energy consumption and makespan.

2 Problem Definition

The problem is formulated as a multi-line hybrid flow shop scheduling problem (MHF-
SSP) with a time of use pricing structure. In this problem, a job j ∈ J has to be assigned to
a line l ∈ Lj and to be operated on consecutive stages consisting of one or more parallel het-
erogeneous machines m ∈ Mjlo. Every operation o ∈ Ojl has a processing time Pjlom and
can be divided into Pjlom sub-operations. The problem considers a total energy consump-
tion Ejlom for every operation and a peak power Wijlom for its ith sub-operation.Wmax

and TECmax are respectively maximum power consumption and maximum total energy
consumption over the makespan. The goal is to determine the starting dates of all opera-
tions o ∈ Ojl in order to minimize the total energy cost CT . In Taguemount et. al. (2023),
a time-indexed approach has been investigated to solve the problem.
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2.1 An example of a multi-line hybrid flow shop architecture

We consider a system of three jobs, two lines and five machines (Fig.1). Every line has
a number of stages. j0 can be processed both on line 1 and 2, j1 can only be processed on
line 1, j2 can only be processed on line 2. The processing times and energy consumptions
are predefined. Energy prices are defined per consecutive time slot durations.

Fig. 1: Multi-line hybrid flow shop

3 Algorithm

In order to obtain solutions to a MHFSSP, we propose a multi-start heuristic approach
consisting of: (i) a randomized solutions generation, (ii) an evaluation procedure, (iii) a
stochastic local search algorithm.

3.1 Encoding approach

Amongst all solution representations in the scientific literature, we have selected the
repetition vector as this representation permits to consider the order between jobs according
to their starting date on machines. Therefore, solutions represent a feasible order between
operations. Considering the characteristics of a MHFSSP, a solution is viewed as a triplet
vector (γ,σ,π), where γ denotes the assignment of each job to a production line, σ is the
assignment vector stating which of the parallel machines at a given stage should perform
the operation (i.e. Suppose that job j0 is assigned to line 1 in Fig.1. At stage 2 of line 1, an
operation could be performed either on M2 or M3 if both are available. If operation 2 of
job j0 is performed on M2 then σ[2]<0.5, if M3 is chosen then σ[2]>0.5) and π determines
the sequencing order of jobs and is built as a repetition vector.

3.2 Decoding approach

The decoding approach is based on an earliest starting date approach. All jobs j are
assigned to a line l. For every job, a machine m is selected amongst all parallel machines
at every stage. To determine the earliest start date of each job j on machine m, we shall
consider the order between the operations of a job and positions of jobs on machines. We
note Cjk−1 as the completion time of job j at stage k − 1 and Cj′k is the completion time
of job j′ at stage k. A job j is operated on machine m at stage k once job j at stage k− 1
and job j′ on machine m at stage k have been completed. For each job j on machine m, the
start date equals maximum (Cj′k, Cjk−1). The start date of a job j at stage k equals the
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end date of job j at stage k− 1 with respect to the processing order of operations of job j.
Moreover, it equals the end date of job j′ at stage k when there is only one machine at stage
k. The job j on machine m starts at the earliest date considering the precedence constraints
and the availability of energy resource. The computed objective function is equal to the
energy cost while adding up a penalty if the makespan, the energy consumption and the
peak power upper-bounds have been exceeded.

3.3 Local Search Algorithm

Launching a stochastic local search algorithm permits to generate potential vectors
(γ,σ,π) minimizing energy cost with respect to makespan, energy and peak limits by ex-
ploring a set of neighbors (γ′,σ′,π′) of the initially generated solution. A number p is
randomly selected from ]0, 1[. If p < 0.33 then we generate the neighboring vector π′ of π.
Furthermore, when p < 0.66, the neighboring vector σ′ of σ is constructed and if p < 1
then the neighboring vector γ′ of γ is built. The neighboring vectors are generated through
randomly applying disturbances on the initial solution’s triplet vectors. π′ is generated
by switching the position of two randomly selected jobs’ occurrences. A new vector σ′

consists in randomly changing the value of a machine’s assignment. Moreover, A different
line is selected for a randomly chosen job to generate the neighboring vector of γ. The
objective function of the neighboring solution S′ obtained from S is then computed. If
objectivefunction(S′) < objectivefunction(S) then S′ is kept as the current solution, and
the local search continues until reaching a predefined number of iterations. Finally, S∗ is
kept as the best found solution.

4 Results

The implementation of the algorithm to solve the example in section 2 has given the
solution in Fig.2 below. This solution can be represented by the triplet π[i] = [1 2 2 0 1 0],
σ[i] = [1 0.6 1 0.2 1 1] and γ[j] = [1 1 2]. The algorithm is implemented considering
the following parameters: Maximum total energy consumption TECmax = 500; maximum
power peakWT

max = 30; Maximum makespan Cmax = 30. The result is displayed as a Gantt
chart in Fig.2 which illustrates the peak power per step time and the periods of energy
price variations. The returned cost equals 4962. As can be viewed in this figure, maximum
power consumption is reached at periods P1 and P5, the heuristic places operations at the
earliest starting date considering the order between operations and the positions of jobs on
machines (i.e. the second operation of j0 is assigned to M3 at stage 2 of line 1 starts right
after the end of operation 1 of job j0).

5 Conclusion

In this abstract, a heuristic approach is investigated for a multi-line hybrid flow shop
problem with energy considerations. First, further tests and analysis of the heuristic’s
performance will be conducted by implementing the algorithm on a set of instances. We
will create instances that vary in terms of instance size, flexibility level, upper-bounds
on parameters (i.e. makespan, total energy consumption and peak power). Since hybrid
flow shop and distributed hybrid flow shop scheduling problems have been treated in the
literature using heuristics and meta-heuristics, it would be also interesting to compare
the performance of the proposed algorithm to other algorithms by applying it to a set of
instances from the literature while adapting them to this particular scheduling problem
structure and energy efficiency context.
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Fig. 2: Obtained solution using the meta-heuristic on the numerical example: Gantt chart
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1 Introduction

As projects become more and more complex and the external environment increasingly
uncertain, projects become susceptible to various risks that could potentially disrupt their
execution. Such interruptions can have a profound impact on the availability of project
resources and the realized project duration, and project managers should therefore evaluate
the possibility and severity of uncertainty before establishing a baseline schedule (Deblaere
et. al. 2011). By building sufficient buffers against time and resource conflicts into the
project schedule, they can be better prepared for possible disruptions and better mitigate
the impact on the planned schedule when unforeseen emergencies arise (Lambrechts et.
al. 2008).

Of all the sources of uncertainty that exist in a project, disruptions in the duration
of activities are a central concern for project managers (Chen et. al. 2018). Since the
duration estimates in the project schedule always contain a certain degree of uncertainty,
deviations from these estimates must be taken into account (Van de Vonder et. al. 2008).
Therefore, significant research efforts have been devoted to the domain of uncertainty in
project scheduling, with an emphasis on creating schedules that show a high degree of
resilience in the face of unforeseen disruptions.

This study will extend the deterministic resource-constrained project scheduling problem
(RCPSP) to a stochastic version focusing on the uncertainty of the duration of activities.
More specifically, the study aims to construct a project schedule that changes as little as
possible when disruptions occur during project execution by using activity buffers. The
project schedule will be generated by an adaptive Tabu Search method to optimize the
trade-off between stability and the expected project duration. This method makes use of
three definitions of possible conflicts that may arise in the project schedule to obtain the
best possible schedule.

2 Problem Statement

2.1 Stochastic activity duration

In the stochastic project scheduling problem, a project can be represented by an acyclic
activity-on-the-node network G = (N,A), where the non-dummy activities are character-
ized by the node set N = {1, ..., n} and the precedence relations between activities i and j
by the arc set A, i.e. (i, j) ∈ A. The project also consists of a dummy start activity 0 and
a dummy end activity n + 1, which both have a zero duration and resource requirement.
Each activity i ∈ N has a non-zero duration di and a non-zero requirement ri,k of resource
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type k per unit time. There are K types of renewable resources and each resource type
k has a fixed resource availability Rk. TSi denotes the set of all the transitive successor
activities of activity i and S∗

i denotes the set of all its immediate successors. A schedule s
contains the start times si of all activities i ∈ N and the project should be completed prior
to the deadline δ. The weight wi represents the instability cost caused by activity i and
has a crucial part in the trade-off between the stability and the expected project duration
of a schedule.

This paper assumes that every activity i has both a certain part and an uncertain part
of the duration, and the uncertain part follows a lognormal distribution, i.e. di ∼ Ln(µi, σ

2
i )

with the mean duration µi and standard deviation σi. This uncertain part of the duration is
then limited to a range of the activity duration between two percentiles, a lower percentile
and an upper percentile. As a result, the activity execution period can be formulated as a
combination of the certain and uncertain part.

Therefore, the cumulative distribution function cdfi(t) of di will represent the possibility
of activity i being completed before time t given the uncertain part of the activity execution
period and 1−cdfi(t) represents the possibility that activity i is not completed before time
t. This information will subsequently be used to determine the probability and impact
of conflicts between activity i and its successors, and thus the maximum risk caused by
the uncertainty of activity i. This degree of conflict risk among related activities impacts
the instability of the project execution, and in the following section the types of potential
sources of conflicts are briefly outlined.

2.2 Three types of conflict overlap

Three sources of conflicts will be analyzed and a measure of the possibility of conflicts
will be proposed along the following lines:

Precedence conflict Conflicts arise when, for precedence related activities, the succeed-
ing activity starts before the certain completion of the preceding activity and the total
risk of the conflict can be computed based on cdfi(t).

Resource conflict Besides the precedence relations, the resource availability also con-
strains the activities in the project. When creating the baseline schedule based on the
mean value of the activity durations µi, the overlap of the uncertain parts of the du-
ration from various activities could potentially result in a resource conflict and should
therefore be considered.

Deadline conflict Project deadlines limit the execution of activities near the end of the
project and thus restricts the certain execution interval of activities to exceed the
project deadline. However, there is a possibility that the uncertain execution interval
of these activities exceeds the project deadline, resulting in a deadline conflict.

Given these three types of conflicts, the overall conflicts in the project are determined
by multiplying the individual activity conflicts together with the activity weights. The
more conflicts in the project, the greater the project risk during actual implementation.
Therefore, this paper aims to minimize the project conflicts by reasonably arranging the
start time of activities by using an efficient solution method discussed in the following
section.

3 Solution Method

Our solution method is derived from the Earliest-Start Policy by Stork F. and Uetz M.
(2005) in order to reduce the number of temporary minimal forbidden sets (TMFS) in a
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baseline schedule using a Tabu Search procedure. Below, we briefly outline the different
steps of the algorithm.

Step 1 Initiate a schedule s0 using the serial schedule generating scheme (SSGS) with
a random activity list AL and a time buffer list BL presented in Lambrechts et. al.
(2008). The AL and BL will be added to the activity tabu list ATL and buffer tabu
list BTL respectively.

Step 2 Find out all the TMFS, in which the resource requirement of all the activities is
over-usage but the resource conflict will be eliminated when any one of the activities
is removed.

Step 3 Adjust the start time of activities in TMFS forward or backward in order to
mitigate the conflicts and add all the local improved solutions into the tabu lists ATL
and BTL.

Step 4 Generate a new AL after a certain number of iterations without improvement in
BL, by swapping the activity pair following the greedy strategy to reduce the most
weighted overlap respecting the precedence relationship.

Step 5 Go back to step 2 until any of the stop criteria is reached.

4 Experiments

4.1 Generation of test instances

We use the 480 instances with 30 activities from the well-known PSPLIB for the RCPSP
and assume that the activity durations follow a lognormal distribution, as shown in Table
1. The weights of all the non-dummy activities are generated from a discrete, triangular
shaped distribution between 1 and 10 with respect to P (wi = x) = 0.21 − 0.02x Van de
Vonder et. al. (2008). The weight of the dummy end activity denotes the marginal cost of
not meeting the project deadline and is important for dealing with the deadline conflicts.
It is set equal to wn+1 will be fixed at ⌊10× 3.85⌋. In our experiment, the project deadline
δ of each instance is set equal to the optimal makespan in the deterministic environment
and a deadline factor α. This factor models the trade-off between the project stability
and project duration, and is set to three levels in our study (10%, 20%, 30%). For the
evaluation of a schedule, the weighted deviation of realized and scheduled start times
represents the stability measure (M1) and the total number of times that the deadline is
surpassed represents the protection measure (M2).

Table 1. The parameters of the lognormal distribution

µ σ2 variance
Lgn1 ln(

3d∗i√
10
) ln( 10

9
)

d∗i
9

Lgn2 ln(
√
3d∗i
2

) ln( 4
3
)

d∗i
3

Lgn3 ln(
d∗i√
2
) ln(2) d∗i

4.2 Benchmarks schedules

The schedules generated using our will be benchmarked against three types of schedules:

Benchmark Schedule 1 (BS1) This benchmark solution assumes a static environment
as we use a state-of-the-art heuristic method to solve the basic RCPSP under deter-
ministic activity duration.

Booklet of abstracts for the 19th International Workshop on Project Management and Scheduling, April 2�5, 2024

167



Benchmark Schedule 2 (BS2) This benchmark solution is generated using the robust-
ness measure proposed in Lambrechts et. al. (2008), i.e.MaxFS =

∑N
j=1 CIWj

∑FSj

i=1 e
−i.

Benchmark Schedule 3 (BS3) is generated by the STC method proposed in Van de
Vonder et. al. (2008).

The results of the computational experiments provide the following insights. First, a
increased attention to stochastic activity durations improves the schedule stability and de-
creases the expected project makespan compared to the deterministic assumption. Second,
the method adopted in this study proves to be more effective than existing methods in
improving both the stability and reducing the project makespan. Finally, decision makers
can achieve a trade-off between the schedule stability and the protection of the project
makespan by adjusting the relative activity weights.

5 Conclusion

In uncertain and complex projects, the assumption of deterministic activity duration
has become obsolete and project managers need to consider stochastic activity durations.
In order to deal with the trade-off between the schedule stability and the project makespan,
we study three types of conflicts (precedence, resource and deadline). We conclude that our
adaptive Tabu search procedure can generate better schedules compared to three bench-
marks in terms of both schedule stability and expected makespan objectives.
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1 Introduction

In this contribution we focus on a particular setting in which two agents are concerned
by the scheduling of a set of n jobs. The �rst agent, called the leader, can take some deci-
sions before providing the jobset to the second agent, called the follower, who then takes
the remaining decisions to solve the problem. As an example, the leader could select a
subset of n′ ≤ n jobs that the follower has to schedule. Notice that the decisions the agents
can take are exclusive: in this example, the follower cannot decide the jobs to schedule
and the leader cannot schedule the jobs. This setting falls into the category of bilevel op-
timization (Dempe et al. 2015). In such problems it is assumed that the leader and the
follower pursue their own objectives which can be contradictory, so leading to very hard
optimization problems. The existence of potential multiple optimal solutions to the fol-
lower's problem leads to two classes of problems (Dempe 2003): optimistic and pessimistic
bilevel problems. In an optimistic bilevel problem, it is assumed that the follower returns,
among all its optimal solutions, the one that leads to the smallest value of the leader's
objective function. On the contrary, in a pessimistic bilevel problem, it is assumed that the
follower returns its optimal solution that is the worst for the leader's objective function.
Another class of bilevel optimization problems can be met in the literature, that are called
adversarial bilevel problems. In this setting, the leader takes decision so that the optimal
solution of the follower's problem is the worst possible.

Recently, many papers on bilevel combinatorial optimization appeared, here we refer
to (Caprara et al. 2016, Della Croce and Scatamacchia 2019, Fischetti et al. 2017, Fis-
chetti et al. 2019, Fischetti et al. 2018, Woeginger 2021) just to mention a few. On
the other hand, to the authors knowledge, the literature on bilevel scheduling is much
more limited. (Karlof and Wang 1996), and next (Abass 2005), �rst considered a �ow-
shop scheduling problem with operators where the leader determines the schedule of op-
erators to minimize the sum of job completion times while the follower determines the
schedule of jobs to minimize the makespan. (Kovacs and Kis 2011) consider an optimistic
bilevel single machine problem in which the leader selects the set of jobs the follower
next schedules. Following the standard scheduling notation, this problem is denoted by
1|OPT−n, rj , d̃j |

∑
j w

L
j xj ,

∑
j w

F
j C

F
j , with OPT−nmeaning that the optimistic setting is

considered and |∑j w
L
j xj is the total weight of selected jobs. (Kis and Kovacs 2012) consid-

ered both the P |OPT −Ak|
∑

j w
L
j C

L
j ,
∑

j w
F
j C

F
j and P |PES−Ak|

∑
j w

L
j C

L
j ,
∑

j w
F
j C

F
j
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problems: they correspond to the optimistic (OPT ) and pessimistic (PES) settings of the
problem where the leader de�nes the set of jobs Ak assigned to any machine k while the
follower sequence them on each machine. The problem is shown to be strongly NP-hard.
(Kis and Kovacs 2012) considered again the 1|OPT − n, rj , d̃j |

∑
j w

L
j xj ,

∑
j w

F
j C

F
j prob-

lem and showed that it is weakly NP-hard.

In this work we focus on single machine scheduling problems in the bilevel adversarial
setting. It is a follow up of (T'kindt et al. 2024). We de�ne in section 2 the di�erent scenario
that can be met and we provide a synthesis of the proposed results. Section 3 provides
details about some of these results. Section 4 consider extensions of these problems to
optimistic problems.

2 Adversarial bilevel single machine scheduling

It is assumed that n jobs are to be scheduled on a single disjunctive machine. Each
job j is de�ned by a processing time pj and, depending on the problem, a weight wj

or a due date dj . The follower is scheduling jobs so that its objective function fF ∈
{∑j C

F
j ,
∑

j w
F
j C

F
j , L

F
max,

∑
j U

F
j } is minimized. Beforehand, the leader can take some

decisions that impact the instance solved by the follower. In this contribution we consider
the scenario when a set of N jobs is given to the leader. Next, he selects a subset of n ≤ N
jobs, for any given n, that the follower schedules.

The leader takes decisions so that the optimal solution computed by the follower is as
bad as possible. In this contribution, we focus on scenario (S1). Considering the three-�eld
notation for scheduling problems, the corresponding problems are denoted by ADV − n.
The proposed results, discussed during the conference, are summarized in Table 1. Notice
that we focused on problem that are polynomially solvable in a classical setting: those
that are already known to be NP-hard in the classical setting, e.g. 1||∑j Tj , cannot be
polynomially solvable in the adversarial bilevel setting. Table 1 shows that, surprisingly,
the minimization of

∑
j wjC

F
j is an open problem. Also, minimizing the number of tardy

jobs
∑

j U
F
j can be achieved in polynomial time but the problem of deciding whether or

not there exists a schedule with jobs in L tardy, with L a given set of jobs, is an NP-hard
decision problem.

Polynomially solvable problems

1|ADV − n|∑j C
F
j 1|ADV − n|LF

max

1|ADV − n|∑j U
F
j

NP-hard problem

1|ADV − n,L|−
Open problem

1|ADV − n|∑j wjC
F
j

Table 1. Complexity status of some bilevel single machine scheduling problems
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3 Solving problem 1|ADV − n|∑j wjC
F
j and 1|ADV − n|∑j U

F
j

First, consider the unweighted case, i.e. the minimization of
∑

j C
F
j . The bilevel prob-

lem can solved in polynomial time as follows: (1) the leader selects the n jobs with the
largest processing times, (2) the follower schedules these n jobs in increasing order of their
processing time (SPT order).
When generalizing to the weighted case, one could think that the following algorithm is
optimal: (1) the leader selects the n jobs with the largest ratio

pj

wj
, (2) the follower sched-

ules these n jobs in increasing order of their ratio (WSPT order). It is a natural intuitive
extension of the algorithm for the unweighted case but that is, unfortunately, not correct.
It is enough to consider the following counter example with N = 4 jobs, p = [10; 1; 3; 1]
and w = [1000; 2; 4; 1]. Suppose n = 3 and let s = (2, 3, 4) be the solution obtained if the
leader selects the 3 jobs with largest ratio

pj

wj
. We have

∑
j wjC

F
j (s) = 23. But if the leader

selects jobs {1, 2, 3} then WSPT gives s′ = (1, 2, 3) and
∑

j wjC
F
j (s′) = 10078.

A thorough analysis of the problem enables to establish the following result.

Lemma 1. Let be two jobs k and ℓ such that:

1. pk

wk
< pℓ

wℓ
, and

2. There are at least n jobs j such that pk

wk
<

pj

wj
, and

3. There are strictly less than n jobs j such that pℓ

wℓ
<

pj

wj
.

Then, the two following conditions hold:

(C1) if wℓ ≥ wk then there does not exist an optimal solution to the bilevel problem in which
k is selected and not ℓ.

(C2) if wℓ < wk and pk ≥ pℓ then there does not exist an optimal solution to the bilevel
problem in which ℓ is selected and not k.

However, the complexity of the 1|ADV −n|∑j wjC
F
j problem remains open: this prob-

lem seems to be at the border between easy and hard problems.

Now, assume that each job j has a due date dj and the follower minimizes the number
of tardy jobs

∑
j U

F
j with UF

j = 1 if CF
j > dj and 0 otherwise. We assume that jobs are in-

dexed following the non-decreasing order of their due date (EDD order), i.e. d1 ≤ ... ≤ dN .
To solve this problem, we propose a dynamic programming algorithm.

Let C(j, k, ϵ) be the value of the smallest makespan when k jobs among the j �rst ones
are selected and ϵ of them are tardy. We have:

C(j, k, ϵ) =

max

(
C(j − 1, k, ϵ)︸ ︷︷ ︸

j is not selected

; min
(
C(j − 1, k − 1, ϵ− 1)︸ ︷︷ ︸

j is tardy

; C(j − 1, k − 1, ϵ) + pj︸ ︷︷ ︸
if C(j−1, k − 1, ϵ) + pj ≤ dj ; +∞ otherwise

)

︸ ︷︷ ︸
j is selected

)

with C(j, k, ϵ) = +∞ whenever ϵ < 0 or ϵ > j, C(j, k, ϵ) = −∞ whenever j < k, and
C(0, 0, 0) = 0. Notice that the two terms inside the min() correspond to j being scheduled
tardy and, respectively, being scheduled early. Besides, whenever the min() returns +∞,
this value must be transformed into −∞ during the recursions. This is due to the fact that
when the min() returns +∞ there is no feasible solution when j is selected and this term
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must be transformed to −∞ to be taken into account in the max() as an infeasible decision.
Solving the bilevel problem requests to determine the greatest value ϵU such that
C(N,n, ϵU ) ̸= −∞. This dynamic programming algorithm requires O(Nn2) time and space
which implies that the 1|ADV − n|∑j U

F
j problem can be solved in polynomial time.

To conclude this section, and in order to further highlight how challenging bilevel
scheduling problems are, we consider a problem closely related to the above 1|ADV −
n|∑j U

F
j problem. Assume that the list L of tardy jobs is imposed, that is the problem

turns to a decision problem where the leader has to select (n − |L|) jobs so that when
the follower schedules the n jobs, only those in L are tardy. This problem is denoted by
1|ADV −n,L|− and is proved to be NP-complete by reduction from Equal-size Partition.

4 Extension to optimistic problems

At the conference we will also provide results about some optimistic problems. We
will notable focus to the case when the follower minimizes the sum of completion times∑

j C
F
j . We will show that when the leader minimizes the number of tardy jobs

∑
j U

L
j

the bilevel problem can be solved in polynomial time. However, the problem turns to be
NP-hard when the leader minimizes the weighted number of tardy jobs

∑
j wjU

L
j or the

total tardiness
∑

j T
L
j .
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1 Introduction

In this work, a robust real-life multi-skill resource-constrained multi-project scheduling
problem is modeled and solved. The problem is motivated by the scheduling problem faced
by the ten heavy maintenance centers of SNCF, the French national railway company,
where the most heavy maintenance operations, and thus longest ones (several weeks to
several months), are carried out. Several rolling stock units are maintained simultaneously,
and each unit is considered as a project. To complete each project, a set of activities
that require resources with different skills must be performed. Different types of multi-
skilled resources (maintenance operators and machines) with different characteristics and
constraints are taken into account (Torba et al. 2024).

In the context of heavy maintenance, many operations are performed by human oper-
ators and estimating the required workload is not easy. Moreover, uncertain tasks, with
a known probability to be required or not, should also be considered. This paper extends
our previous work in (Torba et al. 2024) and integrates the different uncertainties in the
decision process to generate robust schedules i.e., schedules that remain efficient in case
of disturbances. To build robust schedules, involving hundreds of projects and thousands
of operations, scenarios with a limited budget of uncertainty (Bertsimas & Sim 2004) are
embedded into a memetic algorithm (MA). The objective is to maximize the probability
of meeting the customer deadlines.

2 Literature review

The resource-constrained project scheduling problem (RCPSP) is a NP-hard opti-
mization problem that involves scheduling a set of activities subject to precedence con-
straints and resource availability (Deblaere et al. 2011). Since its formulation by (Pritsker
et al. 1969), many extensions and solution methods have been proposed. A generalization
of the RCPSP is to consider the resource-constrained multi-project scheduling problem
(RCMPSP) which better addresses the complexity of some real-world applications (Lova
et al. 2000). Solving the RCMPSP is more challenging due to the simultaneous manage-
ment of multiple projects, leading to larger problem sizes and other factors to consider such
as project tightness and delay penalties. The Multi-Skill Resource-Constrained Project
Scheduling Problem (MSRCPSP) extends the RCPSP by considering resources that have
multiple skills (Bellenguez & Néron 2004). Over the past decade, researchers are showing
a growing interest in the the Stochastic Resource-Constrained Project Scheduling Prob-
lem (S-RCPSP). In fact, in many real-world problems, ignoring uncertainties may lead to
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schedules of poor quality under real conditions (Bruni et al. 2017). The main approaches
proposed in the literature to deal with uncertainties are:

– Reactive Scheduling, which involves finding the best scheduling policies when dis-
ruptions affect the initial schedule. This approach is relevant when disruptions are
unpredictable, lacking any prior information about uncertainties (Deblaere et al. 2011).

– Predictive Scheduling, which requires a precise estimation of uncertainties to com-
pute a predictive baseline schedule. However, accurate data on uncertainties being
often not available, the disruptions are tackled by the reactive approach, recognized as
predictive-reactive scheduling (Herroelen & Leus 2005) .

– Stochastic Scheduling, when the probability distributions of uncertainties are known.
However, two major problems arise: the availability of probability data and the prac-
tical difficulty of solving stochastic models (Deblaere et al. 2011).

– Robust (or Proactive) Scheduling, where robust schedules are determined that are
less sensitive to disturbances. Unlike predictive and stochastic scheduling, this approach
can be used even if uncertainties are known only approximately (Bruni et al. 2017).

A robust scheduling approach is the most reasonable approach to deal with real-world
problems where data is not (always) accurate, in particular in the considered problem where
activities are performed by maintenance operators. Hence, a novel robust optimization
method for the RCPSP with multiple projects and multi-skilled resources is presented.

3 Generation of scenarios and solution approach

3.1 Generation of scenarios

To generate robust schedules, we first start by defining scenarios based on the analy-
sis of historical data. For uncertain tasks, we compute the probability of having to per-
form the task or not. In each scenario, an uncertain task has either a workload equal
to zero with a probability of p1, or a non-zero workload with a probability of p2 (where
p1 + p2 = 1). Following the same reasoning, to handle poor workload estimation, we de-
fine several realization modes for a given task. Each mode has a different workload and
an associated probability of occurrence. As many uncertainties are observed, the gener-
ation of all possible scenarios is computationally intractable. Using the worst scenarios
to determine a robust schedule is (in most cases) very pessimistic and over-conservative
(Bruni et al. 2017). Furthermore, the chances that all activities take their worst modes
are nearly zero. Generating a subset Ω of random scenarios using the probabilities asso-
ciated to each mode and each task could be a potential solution. However, this leads to
the same issue as when generating all scenarios. In fact, a huge number of scenarios must
be generated to effectively capture uncertainties, and computing a robust solution with a
lot of scenarios induces significant computational challenges. Considering that our primary
objective is to tackle large industrial instances, we limit ourselves to a subset of scenar-
ios with a specified budget of uncertainty (Bertsimas & Sim 2004). To better represent
reality, distinct budgets of uncertainty Γr,k,t are defined and computed using historical
data for each resource r, skill k and period t. By increasing the budget of uncertainty,
the approach tends to be more conservative and, for large enough Γr,k,t, it is similar to
considering worst-case scenarios. More precisely, Γr,k,t defines the following uncertainty
polytope: Θr,k,t = {φa,r,k, a ∈ A/ESa = t,

∑
a∈A(φa,r,k − φ̄a,r,k) <= Γr,k,t}, where φa,r,k

(respectively φ̄a,r,k) is the realized (respectively deterministic) workload for activity a ∈ A,
resource r and skill k, and ESa is the earliest starting time of activity a. To generate sce-
narios, the scheduling horizon H is divided into months. The general idea is to model the
variation of the task workload, transitioning from the planned values to those observed in
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historical data. A scenario w represents a set of realized workloads necessary to process the
activities: w = {φa,r,k, a ∈ A, r ∈ R, k ∈ K}. Note that φa,r,k has a direct impact on the
resource requirement and, consequently, on the starting time of the activities for a given
sequence. Furthermore, if for an activity a ∈ A, φa,r,k = 0 for all r ∈ R and k ∈ K, then
the activity is not required, and the processing time pa is set to 0.

3.2 Solution approach

To address this large industrial problem, an efficient memetic algorithm (MA) was
implemented, and validated in both real instances and benchmark instances with multi-
ple projects, for the deterministic problem (Torba et al. 2024). The same algorithm was
adapted to compute a robust schedule that maximizes the probability of meeting the rolling
stock due dates. Given a set of scenarios Ω and a sequence of activities S (representing an
assignment and a precedence feasible activity list), this probability is defined as the tar-
diness service level (following (Dauzère-Pérès et al. 2008) and (Flores-Gómez et al. 2023))
and can be written: α(S,Ω, e) = P(Te(S,Ω) = 0) for rolling stock unit e. As we deal with
several projects (i.e. rolling stock units), and since the projects do not have the same prior-
ity, the weighted sum of the tardiness service level of the rolling stock units is maximized:
α(S,Ω, E) =

∑
e∈E weP(Te(S,Ω) = 0), where we is the weight of project e ∈ E . The initial

solutions are computed using the deterministic data and the original memetic algorithm.
Then, the service level of each initial solution is evaluated and further improved using the
MA. The computation of the service level of a sequence S, given a set of scenarios Ω, is
formalized in Algorithm 1.1.

Algorithm 1.1 Evaluation of α(S,Ω, E) of a given sequence S
1: Initialize P(Te(S,Ω) = 0) to zero for each e ∈ E;
2: for ω ∈ Ω do
3: {Te, e ∈ E} ← Evaluate(Si(ω));. Returns the tardiness of each project given scenario w;
4: for e ∈ E do
5: if Te==0 then
6: P(Te(S,Ω) = 0)← P(Te(S,Ω) = 0) + 1/|Ω|;
7: end if
8: end for
9: end for

10: α(Si, Ω, E)←
∑

e∈E weP(Te(S,Ω) = 0);
11: return α(Si, Ω, E);

4 Numerical results

Preliminary results show that schedules with a very good service level can be computed
in a few iterations, even if the service level of the initial schedules is very poor. An example
is illustrated in Figure 1, where the service level of the best initial solution is 20%, and
after 1,200 computed schedules the MA found a solution with a service level of 100%. Note
that this is a real instance of a SNCF maintenance center that includes 174 projects and
4,553 activities. To evaluate the service level, 500 scenarios with a budget of uncertainty
were generated.
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Fig. 1. Convergence of the service level (in %) over the number of computed schedules

5 Conclusions

An original robust multi-skill resource-constrained multi-project scheduling problem is
addressed. Different uncertainties are considered and modelled using scenarios defined with
a budget of uncertainty and real data. An adaptation of a memetic algorithm proposed
for the deterministic problem is proposed to determine robust schedules. Computational
experiments, with different budgets of uncertainty and numbers of scenarios are being
conducted, the results of which will be presented and discussed at the conference.

Bibliography

Bellenguez, O. & Néron, E. (2004), Lower bounds for the multi-skill project scheduling
problem with hierarchical levels of skills, in ‘International conference on the practice
and theory of automated timetabling’, Springer, pp. 229–243.

Bertsimas, D. & Sim, M. (2004), ‘The price of robustness’, Operations research 52(1), 3553.
Bruni, M. E., Pugliese, L. D. P., Beraldi, P. & Guerriero, F. (2017), ‘An adjustable ro-
bust optimization model for the resource-constrained project scheduling problem with
uncertain activity durations’, Omega 71, 66–84.

Dauzère-Pérès, S., Castagliola, P. & Lahlou, C. (2008), ‘Service level in scheduling’.
Deblaere, F., Demeulemeester, E. & Herroelen, W. (2011), ‘Proactive policies for the
stochastic resource-constrained project scheduling problem’, European Journal of Op-
erational Research 214(2), 308–316.

Flores-Gómez, M., Borodin, V. & Dauzère-Pérès, S. (2023), ‘Maximizing the service level
on the makespan in the stochastic flexible job-shop scheduling problem’, Computers &
Operations Research 157, 106237.

Herroelen, W. & Leus, R. (2005), ‘Project scheduling under uncertainty: Survey and re-
search potentials’, European journal of operational research 165(2), 289–306.

Lova, A., Maroto, C. & Tormos, P. (2000), ‘A multicriteria heuristic method to improve
resource allocation in multiproject scheduling’, European journal of operational research
127(2), 408–424.

Pritsker, A. A. B., Waiters, L. J. & Wolfe, P. M. (1969), ‘Multiproject scheduling with
limited resources: A zero-one programming approach’, Management science 16(1).

Torba, R., Dauzère-Pérès, S., Yugma, C., Gallais, C. & Pouzet, J. (2024), ‘Solving a real-life
multi-skill resource-constrained multi-project scheduling problem’, Annals of Operations
Research pp. 1–46.

Booklet of abstracts for the 19th International Workshop on Project Management and Scheduling, April 2�5, 2024

176



Generation, application and empirical evaluation of a
hybrid risk model for forecasting project duration and

cost

Izel Unsal Altuncan1, Mario Vanhoucke1,2,3

1 Ghent University, Belgium
izel.unsalaltuncan@ugent.be

2 Vlerick Business School, Belgium
3 University College London,UK

mario.vanhoucke@ugent.be

Keywords: Risk modelling, Project forecasting, Project simulation

1 Introduction

Recent studies acknowledge that project risks are not independent but rather dependent
through cause-effect relationships. Tools to facilitate these relationships are referred to as
risk models serving in sensitivity analysis, risk response planning, and forecasting. This
research, however, specifically emphasizes on forecasting.

In literature two methods are used for forecasting with risk models. The first method
is the Bayesian Networks (BN) for forecasting project duration and cost relying on proba-
bilistic causation between risks. The second method is the Structural Equation Modeling
(SEM) founded on cause-effect reasoning. BN exhibits more effectively in forecasting com-
pared to SEM due to the ability to update forecasts when the model is introduced with
new data. SEM is less optimal because of the potentially changing model structure when
new data is introduced. Based on this limitation, also noted in Gupta and Kim (2008),
this research utilizes these two methods within a hybrid procedure. First, SEM is used to
validate theoretical relationships derived from the literature. Then a BN relying on the
validated SEM as an input is subsequently used for predicting the final performance of un-
seen projects. The accuracy results will be compared against forecasts generated by various
benchmark methods. The general methodology is performed in four phases, each detailed
in the following sections.

2 Phase 1. Theoretical risk model

The theoretical model in Figure 1 depicts proposed cause-effect relationships between
risk variables and the final project performance relying on the previous research Van-
houcke (2012). The model sonsists of two types of variables, Latent variables illustrated
with ellipses and observable variables illustrated with rectangles. Latent variables cannot
be directly measured and must therefore be calculated using statistical methods over the
observable variables. Latent variables consist of Network Topology (NT), mean and stan-
dard deviation of Time Sensitivity (TSm and TSsd) and Cost Sensitivity (CSm and CSsd)
which are assumed to causally affect two dependent risk variables, Time (T) and the Cost
(C) of the project. Observable indicators consists of given project network indicators (for
NT) and risk metrics for time and cost sensitivity (for TS and CS) and performance data
for T (Actual Duration / Planned Duration) and C (Actual Cost / Budget at Completion).
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3 Phase 2. Data generation and simulation scenarios

This phase generates the project data for validating the theoretical model utilizing 900
artificial project networks from Vanhoucke et al. (2008). During simulation, uncertainty
in the activity durations and costs are modelled across nine different simulation scenarios
given in Figure 2, controlled by the coefficient of variation at different levels. Duration vari-
ation is modelled using triangular distributions with minimum, most likely and maximum
values where the most likely value is assumed to be the baseline duration. Cost variation is
modelled by employing combinations of fixed cost and variable cost sampled from uniform
distributions, each having different ranges.

4 Phase 3. Model construction and training

This phase is designed in two steps. In the first step, SEM is employed to assess the
fit between the theoretical model and data, using the Maximum Likelihood Estimation
algorithm resulting in two different model structures. The model on the left side of Figure
3 is resulted from scenarios 1, 2, 3, 4, and 7, excluding CS variables since activity costs are
higly correlated with the activity durations due to low variation either in duration or cost.
Conversely, the model on the right side emerges from scenarios 5, 6, 8, and 9, retaining
the cost sensitivity variable (CSsd) in the theoretical model. This highlights the potential
impact of CSsd on project performance, in addition to the TSsd and TSm when variation
in activity duration and cost are either medium or high. The first step of this phase results
in two model structures accompanied by SEM parameter sets including factor loadings
to quantify the importance of each observable indicator in measuring the respective risk
variable.

In the second step of this phase, validated observable indicators along with the factor
loadings are employed to calculate scores for the risk variables which cannot be directly
measured. These scores are then utilized to train BN models with structures determined
in the initial step by the SEM. Finally, Bayesian Maximum Likelihood Estimation algo-
rithms are employed to estimate BN parameter sets, consisting of conditional probability
distributions for each risk variable.

5 Phase 4. Forecasting and results analysis

During this phase, the scores for NT, TSm, TSsd and CSsd variables are utilized as
input to simulate the BN models for 1,000 runs. Following this, the weighted average of
the T and C values over 1,000 runs are determined, yielding a single point estimate for
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Fig. 3. Validated risk models

the predicted time and cost performance. In the remaining of this section, we present the
results of the forecasting phase using five key concepts.

1. Data selection: 33 projects are selected from a database of 181 empirical projects
sourced from Batselier and Vanhoucke (2015) considering the availability of observable
indicators and the even distribution across various sectors.

2. Model identification:Using the k-nearest neighbour technique, the best-performing
risk model is selected from nine candidates, which will be referred to as RM in the remainder
of this paper. This selection is based on how closely the model matches the characteristics
of a test project, assessed by comparing the estimated percentage differences in duration
and cost.

3. Benchmark selection: The accuracy of the RM is compared with various bench-
mark methods. These include baseline estimates (BS), Monte Carlo simulations (MCS),
machine learning algorithms (decision trees (DT) and random forest (RF)). In this study,
we also explore a total of nine versions of Earned Value Management (EVM) and three
versions of Earned Duration Management (EDM) for time forecasting. Additionally, we
evaluate eight versions of EVM for cost forecasting. However, due to space constraints, we
only discuss the best-performing versions in comparison to RM.

4. Time accuracy: Table 1 compares the accuracy of methods in terms of Mean
Absolute Percentage Error (MAPE) on average and for different percentiles of the empirical
projects. As shown, RM outperforms the BS and MCS, while slightly falls behind the
machine learning algorithms DT and RF on average. RM performs worse than DT and RF
for only 33% of projects that with higher but less frequent deviations from the baseline
schedule (75th percentile). Table 1 also shows that the best performing EVM method (ES1)
exhibits slightly better performance compared to the RM, on average over all tracking
periods, while the best performing EDM method (EDM1) falls behind the RM. The average
accuracy over all periods does not completely elucidate the overall accuracy since ES1
and EDM1 only begin to outperform RM in the later stages, around 50% completion, as
illustrated in Figure 4.

5. Cost accuracy: Table 1 shows that RM performs equal or slightly better cost
forecasting than BS, MCS, DT and RF for all percentiles. Similar to the time accuracy,
the advantage of the best performing EVM version (EAC2) over RM typically starts only
at around 30% completion, depicted in Figure 4. Therefore, it can be concluded that RM
outperforms EVM in cost forecasting during the early stages of the project, as observed in
time forecasting.
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Table 1. Accuracy comparison in MAPE (%)

Time accuracy Cost accuracy

MAPE BS MCS DT RF RM ES1 EDM1 BS MCS DT RF RM EAC2
25th percentile 4.2 6.3 3.0 4.5 2.4 - - 1.5 1.9 1.1 1.0 0.9 -
50th percentile 12.6 24.7 7.0 7.1 5.4 - - 4.0 4.5 3.6 3.1 3.1 -
75th percentile 20.7 31.0 10.3 11.9 14.0 - - 13.1 17.2 9.1 8.9 8.7 -
Average 14.6 22.1 8.8 9.7 10.1 9.8 11.2 8.7 10.3 5.9 5.6 5.4 4.7
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Fig. 4. Comparison of risk model accuracy to the EVM methods at different stages

This research has presented a hybrid forecasting model for predicting the total duration
and cost of projects combining SEM and BN. 33 empirical projects were used for testing the
model, and the accuracy of those were compared with various methods from the literature.
The results have shown that an accurately selected risk model potentially outperforms
not only the forecasts of the existing pre-project methods but also the EVM/EDM in the
early stages of the project. This highlights the value of applying RM in the initial project
phases, followed by the EVM/EDM, leveraging performance data in the latter stages.
Future research aims at extending the analysis by the benchmark methods and the risk
variables under consideration.
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1 Introduction

Effective project management involves meticulous planning, execution, and control to
ensure that project objectives are achieved within specified timeframes and budgets. The
ongoing monitoring and control of projects play a pivotal role in facilitating corrective
actions in case of deviations and, ultimately, delivering projects promptly. As projects
unfold, project managers are confronted with the unavoidable realities of uncertainty and
variability. These factors can lead to delays or cost overruns, requiring timely corrective
actions to realign the project with its baseline schedule. Conversely, projects may present
opportunities for early completion or cost savings, which necessitate proactive actions.

A multitude of project control methodologies have been proposed in the literature, often
incorporating schedule risk analysis, which considers the sensitivity of activities and their
expected impacts on the overall project duration. However, despite the extensive research
in the realms of risk analysis and project control, a few key questions remain unaddressed.
Our study concentrates on two fundamental aspects. Firstly, project managers operate
within resource constraints and must make judicious decisions about which actions to take
during a project’s lifecycle. Although warning systems can flag the need for action, they
often fall short in providing specific guidance on the selection of activities. In this study, we
employ simulation and analytical sensitivity metrics to develop an “activity ranking” system
that assists in the judicious selection of actions. We compare two classes of activity ranking
to enhance the process of corrective actions under uncertainty. Secondly, the effectiveness
of corrective actions not only depends on the chosen activities but also on the nature of
the action itself. Limited research has explored how different types of actions interact with
activity uncertainty. Our study delves into two classes of actions: one aimed at altering
the average duration of selected activities and the other at reducing variability in activity
durations. This research contributes to a deeper comprehension of the relationship between
activity uncertainty and the type of action deployed.

Our findings, based on an array of artificial projects, demonstrate that specific simulation-
based ranking and the analytical ranking method outperform other approaches. They not
only excel in predicting the impact of actions on expected project duration and variability
but also enhance the efficiency of project managers in controlling project outcomes.

2 Literature study

In the realm of schedule risk analysis, prior research has primarily centered on the
development of various sensitivity metrics for project activities. These metrics, often gen-
erated through Monte Carlo simulations, offer a quantitative measure of activity criticality
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or sensitivity, typically expressed as a percentage. Higher percentages correspond to more
sensitive activities, as seen in the works of Van Slyke (1963) and Williams (1992). A re-
cent study by Vaseghi et. al. (2022) has introduced an innovative analytical approach as
an alternative to Monte Carlo simulations. This approach assesses activity sensitivity by
gauging the influence of changes in activity durations on the overall project duration. Both
simulation-based and analytical methodologies are designed to enhance our comprehension
of activities that exert a substantial impact on project outcomes. These insights serve as
valuable guides for project managers, enabling them to make informed decisions regarding
corrective actions during project execution. Taking actions on highly sensitive activities are
expected to yield greater effects compared to those involving activities with low sensitivity
values.

Furthermore, extensive exploration in the domain of project control has delved into the
implementation of corrective actions during project execution. These studies encompass a
variety of monitoring methods aimed at evaluating project performance at specific junc-
tures, particularly in terms of detecting delays or cost overruns. Earned value management
is a frequently adopted approach across diverse project scenarios, including various project
network structures and levels of activity variability. The literature has considered three key
types of corrective actions: activity crashing, variability reduction, and fast tracking. Ac-
tivity crashing entails reducing activity durations by increasing effort to curtail the project
timeline. This approach has been explored in multiple studies (Hegazy and Petzold (2003);
Vanhoucke (2010); Vanhoucke (2011); Hu et. al. (2016); Song et. al. (2020)). Variabil-
ity reduction focuses on diminishing project variability and activity uncertainty (Madadi
and Iranmanesh (2012); Martens and Vanhoucke (2019)). Lastly, fast tracking seeks to
expedite project completion by concurrently executing partially precedence-related activ-
ities, circumventing the typical project network structure. While previous studies have
predominantly merged the use of simulation-based sensitivity metrics into the corrective
action process, this study seeks to incorporate both simulation-based sensitivity metrics
and analytical ranking procedures. A comparative analysis of their performance within the
framework of activity-based bottom-up project control is a central objective of this research.

3 Computational experiments

This paper conducts a comparative analysis of two distinct activity ranking approaches
aimed at enhancing the corrective action process within uncertain project environments.
In each of these methods, activities are ranked based on specific criteria, and the highest-
ranked activities are grouped into what is termed an action set. This action set guides the
selection of activities for particular corrective actions, as it consists of the most sensitive
activities where corrective actions are likely to have a significant impact. The first class
of ranking measures are the analytical-based ranking measures, which relies on exact or
approximate analytical computations to establish activity rankings. This ranking measure
comprises two analytical metrics, ARm and ARs, introduced by Vaseghiet. al. (2022),
designed to assess the anticipated impact of activities on the distribution of project duration
following corrective action. ARm ranks activities based on their impact on the mean project
duration, while ARs ranks activities based on their impact on the standard deviation of
project duration when subjected to a particular type of action. This analytical method is
comparad with a simulation-based ranking method, which employs Monte Carlo simulations
to assess activity sensitivity. The simulation-based ranking measures represent the main
sensitivity metrics derived from schedule risk analysis (SRA) methodologies, as proposed
by various researchers in the literature. These metrics include CI, SI, SSI, CRI, MOI, and
CSS.
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For computational experiments, the simulation-based and analytical ranking approaches
are evaluated within preventive and protective control strategies. The preventive strategy
takes all actions before project initiation, representing a pure control approach, while the
protective control strategy entails periodic monitoring and the execution of corrective ac-
tions on activities in the action set during project progress. Additionally, we explore the
influence of network topology and action set size on the cumulative impact of corrective
actions. The performance measures used in the computational experiments, taken from
previous research study by Vaseghiet. al. (2022), measure the relative impact of the ac-
tions on the mean and standard deviation of the project duration distribution, represented
by TCm and TCs, respectively.

Preliminary results. To demonstrate the relevance of activity ranking, three distinct
methods of activity selection were employed to form the action set up to six activities. First,
the good ranking includes the highest-ranked activities, assuming they are the most sen-
sitive. The random ranking randomly selects activities, disregarding the activity ranking,
while the bad ranking selects the lowest-ranked activities. Figure 1 presents a comparison
of these activity selection methods, employing the analytical ranking measure ARm and
the simulation-based sensitivity metric SSI for implementing Action 1, which is a specific
type of action to reduce the activity and project durations. The results indicate that the
good ranking method outperforms the other two approaches, underscoring the importance
of ranking activities before project initiation. Furthermore, as the number of actions in
the action set increases, both the total contribution and the significance of a robust rank-
ing system grow. The findings also suggest that the simulation-based SSI metric can be
competitive with analytical indicators.
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Fig. 1. Comparison of good, bad and random activity ranking

Figure 2 illustrates the performance of analytical and simulation-based ranking mea-
sures, classified in three groups for taking Action 1 in protective control strategy. The
results demonstrate a notable dependency on the serial/parallel indicator (SP), with per-
formance decreasing as SP values increase. This trend aligns with existing literature, which
consistently indicates that bottom-up project control, particularly when employing sensi-
tivity metrics, is notably effective for parallel projects but significantly less so for serial
network structures. The first group consists of the best performing methods, which consists
of the analytical ranking methods and the SSI. The second group consists of the MOI and
the three versions of the CRI metric, which shows a relatively stable deviation from Group
1, which means that they perform never as good as the best performing metrics, but the
difference from them is independent of the network structure. The last group consists of
three sensitivity-based metrics, SI, CI and CSS, which perform relatively well for parallel
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networks but their good performance drops quickly when projects are more serial in their
structure. At the very serial network side, these sensitivity metrics have a very weak per-
formance compared to the other ranking methods, and should therefore not be used at all
for activity ranking.
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1 Introduction

The resource-constrained project scheduling problem (RCPSP) stands out as one of the
most investigated problems in the context of project scheduling. The core of this problem
revolves around finding start times of project activities that are subject to precedence
and resource constraints while minimizing the project makespan. Many extensions to the
RCPSP have been proposed to make this problem more applicable to real-life situations.
One of these extensions describes resources as human workers that are able to master
one or multiple skills. In contrast to the RCPSP, activities in the multi-skilled resource-
constrained project scheduling problem (MSRCPSP) have a requirement for skills instead of
a direct requirement for resources. Therefore, it is necessary to not only assign resources to
activities but also to decide on which specific requirement these resources will be deployed.
In literature, several solution methodologies are described to solve project instances for the
MSRCPSP. These methodologies range from simple and fast single-pass heuristics to more
advanced but slower multi-pass meta-heuristics. Given the NP-hard nature of the problem
(Correia et al. 2012), the possibility of obtaining optimal solutions through exact methods
is inherently constrained by instance size, and therefore the development of efficient and
fast heuristics that produce high-quality solutions is of relevance.

In this research, a new heuristic procedure is developed which is based on a parallel
schedule generation scheme that uses various types of priority rules (PR). Well performing
priority rule combinations are selected based on their solution quality and employed to
generate solutions for a benchmark dataset. Additionally, preliminary results are provided
on existing and newly developed priority rules and their ability in generating solutions of
high quality for the MSRCPSP. The procedure is able to generate new best-known solutions
(BK) for the considered dataset.

2 Problem description

In the MSRCPSP, a project network can be represented by a topologically ordered
acyclic activity-on-the-node network G = (N,A). In this network, N = {0, ..., n+1} is the
set of nodes that represent activities in the project. In total, |N | activities are considered,
including a dummy start- and end-node, and n project activities. Each project activity i
has a standard processing time pi, which is predefined and can not be pre-empted. A is the
set of arcs that represent a finish-start precedence relation with a time-lag of zero, between
the activities. The multi-skilled workforce is specified by the resource-set R = {1, ..., |R|}.
All resources master one or multiple skills which are defined by the skill-set S = {1, ..., |S|}.
To allow resources to master skills at a specific level, the skill level set L = {1, ..., |L|} and
the discrete skill level distribution bljk are included in the problem definition. bljk equals
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l ∈ L if resource k masters skill j at level l and zero otherwise. In the MSRCPSP, a resource
k can be assigned to an activity when it masters the required skill.

The function of skill levels in the problem description is dependent on which MSRCPSP
version is used. In this research, four different MSRCPSP versions are considered, one of
which is discussed here. For a detailed overview of the different versions, the reader is
referred to Snauwaert and Vanhoucke (2022).

3 Solution methodology

To solve project instances for the described problem, a procedure is required that is able
to give each activity a start-time while assigning the required resources to these activities.
To do this, a parallel schedule generation scheme (PSGS) is developed which is able to
give activities start times and includes an assignment procedure for the resources. This
PSGS is based on the heuristic provided by Almeida et al. (2016) although a different
assignment procedure is applied. A single run of the PSGS takes three types of priority
rules (PR) and the instance data as input and generates the makespan for the selected rule
combination. The three types of PR are classified as follows. An activity PR determines
which eligible activity receives the highest priority to be scheduled with the available
resources. The choice of an activity PR has an impact on the project makespan. When
the selected activity has multiple requirements, the skill PR determines the order in
which the skill level requirements are considered for resources to be assigned to. When
a specific skill requirement is selected, the resource PR determines the order in which
unassigned resources are considered for assignment to that requirement. Both the skill PR
and resource PR have an impact on which resources are assigned to which requirement of
a given activity. By using the three types of PR’s the PSGS becomes deterministic. This
means that it will always generate the same makespan and resource assignment for the
selected PR combination and project-instance. However it is possible that the used PR’s
result in an infeasible solution for a given project instance.

For this research, 12 activity PR’s, 12 resource PR’s and 4 skill PR’s are considered,
represented in Table 1. The newly developed PR’s are indicated in bold text. These rules
allow for a total of 576 rule combinations to solve a single project instance.

Table 1. Priority rules used in heuristic

Rule Explanation Rule Explanation Rule Explanation

A
ct

iv
it
y

SPT Shortest Processing Time

R
es

ou
rc

e

LB Lowest Breadth

Sk
ill

HSS Highest Skill Strength
LPT Longest Processing Time HB Highest Breadth LSS Lowest Skill Strength
MIS Most immediate successors LGB Lowest Grouped Breadth HSC Highest Skill Criticality
EST Earliest Start Time HGB Highest Grouped Breadth LSC Lowest Skill Criticality
EFT Earliest Finish Time LAD Lowest Average Depth
LST Latest Start Time HAD Highest Average Depth
LFT Latest Finish Time LTND Lowest Total Negative Depth
MSLK Minimum Slack HTND Highest Total Negative Depht
LSF Lowest Skill Factor LBRC Lowest Basic Resource Criticality
HSF Highest Skill Factor HBRC Highest Basic Resource Criticality
LRSC Lowest Ranked Skill Criticality LARC Lowest Advanced Resource Criticality
HRSC Highest Ranked Skill Criticality HARC Highest Advanced Resource Criticality

4 Experiments

To test the solution quality of the procedure, the MSLIB4 dataset is considered. This
is one of the subsets of the MSLIB dataset, created by Snauwaert and Vanhoucke (2023).
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It is composed of 5, 000 project instances which includes projects of 30 activities, 4 skills
and a variable amount of resources. The procedure is run on these instances using all 576
rule combinations. To gain insight in the solution-space quality of the PR’s, the average of
the best makespans for each project instance can be compared with the average makespan
of the best-known solutions (BK). These BK’s are obtained by the genetic algorithm (GA)
developed by Snauwaert and Vanhoucke (2021). The average makespan of the BK equals
83.43, while the average of the best makespans of all 576 rule combinations equals 84.46.

The instances are categorized in four classes,"Better", "Equal", "Worse", or "Infea-
sible". These imply that the heuristic obtains better, equal, worse or infeasible results
compared to the BK. The number of instances for each of these classes is represented in
Table 2 with their average %GAP . Note that the priority heuristic is able to generate
16.20% solutions which are better than the solutions generated by the GA. However, it
is still required for the heuristic to generate 576 solutions per project instance. In a next
experiment we select rules in a smart way to reduce this amount significantly.

Table 2. Solution space quality of the considered PR’s for the MSRCPSP.

Quality #instances %GAP

Better 16.20% −3, 69%
Equal 36.10% 0.00%
Worse 47.66% 4.80%

Infeasible 0.00% -

A subset of MSLIB4 is created, which includes all the instances for which all rule
combinations lead to a feasible solution. This minimum feasibility set (MF) is used to see
how the cumulative performance changes when the solutions of more rule combinations
are added. The rule combinations are ranked on basis of their average performance for
the MF set. The cumulative performance of these ranked rule combinations is represented
in Figure 1 (dotted line) for the 100 best performing rule combinations. However, if each
rule combination is iterative checked on their improvement when they are added to the
set of considered rule combinations, rule combinations can be selected in a smart manner.
All the rule combinations are cross compared and the rule combination which increases
the performance of the set the most, is added to the set. Notice that, by selecting 10 rule
combinations in this manner, the solution quality (full line) is equal to selecting the first
48 ranked rule combinations. This allows us to reduce the amount of schedules generated
per project instance significantly.

48

48

Fig. 1. Evolution of the cumulative performance in relation to the number of rule combinations
considered for the MF subset.
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In a next step, the previous 10 selected rule combinationS are tested on their solution
quality. The cumulative performance of the selected rule combinations, compared to the
BK is represented in Table 3. The heuristic obtains 10.96% better solutions compared to
the BK’s. Additionally, it is able to generate equal solutions in 30.12% of the instances.
These results confirm that using a simple heuristic procedure with a reasonable amount of
priority rule combinations to solve MSRCPSP instances provides, on average, promising
results. Especially because the heuristic can find these equal (and better) solutions much
faster. The presented priority rule heuristic only generates 10 schedules for 5, 000 instances
which requires an average of only 0.0064 seconds computation time per schedule.

Table 3. Comparison of the cumulative performance of the selected rules and BK

Quality #instances %GAP

Better 10.96% −3.56%
Equal 30.12% 0.00%
Worse 58.92% 6.06%

Infeasible 0.00% -

5 Conclusion

The MSRCPSP is an NP-hard problem that requires activity-scheduling and the as-
signment of resources to these activities. In literature, advanced meta-heuristic procedures
are often employed to obtain near optimal solutions. However, this paper shows that it is
possible to obtain reasonably good solutions with the use of simple heuristic priority rules.
A parallel schedule generation scheme is developed which combines three types of priority
rules to solve project-instances for the MSRCPSP. New PR’s are developed that consider
skill-specific priority values. Preliminary results for the solution quality of existing and
new PR’s is provided. A heuristic procedure is developed which selects well performing
PR combinations in order to minimise the project makespan. The heuristic obtains new
best-known solutions for the MSLIB4-dataset.
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1 Introduction

We address the resource overload problem with general temporal constraints, where a
tardiness penalty is added to the objective function when a prede�ned project makespan
is exceeded. This penalty allows for a trade-o� between a balanced resource utilization
and a minimization of the project makespan. For small and medium-sized instances, ge-
netic algorithms obtain good solutions in reasonable time e.g. described in Schnabel et. al.

(2018) and Wohlert and Zimmermann (2023). For large instances with up to 500 activities,
we propose a population-based greedy method. First, a diverse population of solutions is
generated with a serial generation scheme. Afterwards, the solutions are subjected to a
greedy improvement procedure which aims to create a more balanced resource utilization
for selected project makespans.

2 Problem description and structural properties

A given project is composed of a set of activities V consisting of 1, . . . , n real activities
and �ctitious activities 0 and n + 1 which represent the project start and the project
completion. Each activity i ∈ V is assigned a processing time pi ∈ N, which must be
carried out without interruption. The start time of each activity i ∈ V is speci�ed as
Si ≥ 0, and the sequence of all activity start times, ordered by their index, is given in
a schedule S = (S0, S1, . . . , Sn+1). The start times are restricted by general temporal
constraints of the form Sj − Si ≥ δij , where δij ≥ 0 indicates a minimum time lag and
δij < 0 a maximum time lag. The maximum project duration d ∈ N is given as a maximum
time lag between the project completion Sn+1 and the project start S0. Using a longest
path algorithm, the longest distance dij from activity i to activity j can be determined.
With that, the earliest start time ESi = d0i and latest start time LSi = −di0 for each
activity i ∈ V can be obtained. Besides the maximum project duration d̄, we assume a
given prescribed project makespan T ∈ {ESn+1, . . . , d}, which can be exceeded, but then
a constant delay cost factor ρ > 0 is added to the objective for each time unit of delay.
During their execution [Si, Si + pi), the activities have a demand for a set of renewable
resources R. The resource utilization of each activity i and resource k is assumed to be
constant and is given by rik ≥ 0. The cumulative resource utilization of each activity in
execution at a given point in time t and schedule S for a resource k is given by rk(S, t).
This resource utilization rk(S, t) is not constrained by a resource capacity, but positive
deviations from a resource threshold Yk are penalized with a cost factor ck.

The objective of the given problem is to obtain a schedule, which satis�es all temporal
constraints, that minimizes the combined cost of resource overload and a project delay. The
search space of this problem can be reduced by dividing the problem into two subproblems
for which there is always a quasistable schedule among the optima. The �rst subproblem
has a maximum project duration of T , whereas the second subproblem has a minimum
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project duration of T (Wohlert and Zimmermann 2023). A quasistable schedule S has
useful structural properties as for the start time of each activity i ∈ V , there is always an
activity j ∈ V with either a binding precedence relationship Sj = Si + pi or Sj = Si − pj
or a binding temporal constraint Sj = Si + δij or Sj = Si− δji. Assuming that the project
starts at S0 = 0 and all δij ∈ Z, a quasistable schedule contains only integer start times.
The problem with discretized start times can be described as follows.

Minimize f(S) =
∑

k∈R
ck

∑

t∈{0,...,d̄−1}
(rk(S, t)− Yk)+ + ρ · (Sn+1 − T )+

subject to
∑

i∈V :Si≤t<Si+pi

rik ≤ rk(S, t) (k ∈ R, t ∈ {0, . . . , d− 1})

Sj − Si ≥ δij (⟨i, j⟩ ∈ E)

S0 = 0

Si ≥ 0 (i ∈ V )

3 New solution approach

The solution approach starts with the generation of a diverse initial population. Then,
an improvement method is applied to the solutions in the population which is based on
unscheduling and rescheduling subsets of activities.

The initial set of schedules is generated based on a decoding scheme for a genetic algo-
rithm described by Wohlert and Zimmermann (2023) which exploits the already presented
search space reduction. It is shortly described in the following. At initialization, the project
start is scheduled at S0 = 0 and added to set C = {0}. All of the other activities remain
in the set of to be scheduled activities C. In each scheduling step, it is assessed for each
h ∈ C whether a binding temporal or precedence constraint with any j ∈ C results in
a feasible start time Sh. For the start time of the project completion, Sn+1 = T has to
be considered additionally. If at least one feasible Sh can be found, h is added to a set
of eligible activities. Of those, one activity i is chosen and a complete set of eligible start
times is determined which consists of all start times that lead to at least one binding tem-
poral or precedence constraint with an activity in C. In a greedy variant, the start time
with the smallest increase in the resource overload objective is selected as Si. In case of
tied start times, the earlier start time is chosen. If C = ∅, the scheme terminates and a
feasible schedule S results. To increase the diversity of the population, we have adapted the
generation scheme by also considering the later start time to break a tie. When generating
a solution, the same tie-breaker is used for scheduling all activities and is saved alongside
the resulting schedule.

The generated schedules are subjected to the improvement method in ascending order
of their objective value. In the following, the originally generated schedule is called baseline
schedule SB . In the �rst improvement step, the resource overload of SB is tried to be re-
duced with a �xed project makespanm = SB

n+1. For that, each real activity i is unscheduled
as a primary activity in order of non-increasing resource demands pi

∑
k∈R rik. Together

with i further activities are unscheduled with regard to a selected strategy. Rescheduling is
done as described previously with a greedy start time selection in regards to the resource
overload objective. When every real activity has been considered as the primary activity
and no schedule with a better objective value can be found, the improvement method
terminates for the given project makespan. Afterwards, the current project makespan
m is adapted by ∆m = 1 time units. If the project makespan of the baseline sched-
ule is closer or equally as close to the project deadline than to the prescribed makespan
(SB

n+1 ≥ (d+T )/2), the project makespan is reduced by ∆m. To obtain a feasible schedule
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Sm with the given project makespan, SB is copied and the start times for real activities
where SB

i + di,n+1 > (SB
n+1 − ∆m) are adjusted by the di�erence between the left and

right sides of the inequality. In case of SB
n+1 < (d + T )/2, the project makespan m is in-

creased by ∆m. If a better schedule is found with the adjusted project makespan, ∆m is
doubled. If that is not the case, after at least one more iteration, the direction is changed
to re-approach the last makespan where an improvement could be found, ∆m is halved.

Algorithm 1 Improvement method

Require: Schedule SB , U1-strategy and tie-breaker

Sort activities 1, . . . , n according to non-increasing resource demands resulting in order O
S∗ ← SB

while Makespan-adaption is feasible do

Adapt m and adjust SB to feasible S∗,m

while Improvement is found do

for i ∈ O do

S ← S∗,m, U1 = {i}, U2 = {}
Extend U1 and U2 according to given strategy and schedule S
Sort U1, U2 according to non-increasing resource demands

Unschedule activities ∈ U1 ∩ U2 from S
Schedule activities in U1 into S regarding the given tie breaker rule

Schedule activities in U2 into S regarding the given tie breaker rule

if f(S) < f(S∗,m) then
S∗,m ← S

if f(S∗,m) < f(S∗) then
S∗ ← f(S∗,m)

The activities which are unscheduled never include the project start or the project
completion and are classi�ed into two sets U1 and U2, where U1 always contains i. Activity
set U1 can be enlarged utilizing two strategies to select further activities related to i. The
�rst strategy (vertical) focuses on activities that are executed in parallel with activity i.
A similar strategy is utilized in Ballestin et. al. (2007). In Harris (1990), a heuristic for a
resource leveling problem with precedence constraints is presented, where an activity i is
scheduled considering the best start times of its predecessor and successors. Since we assume
general temporal constraints, we exploit this idea by a second strategy (horizontal) that
includes all activities that have a binding precedence constraint with activity i in the
current schedule. This enables activities with binding precedence constraints to be shifted
together or their order to be changed.

To remove all possible start time restrictions for Si, activity set U2 includes all real
activities (not already part of U1) which have a binding temporal constraint with activity i
and recursively all other real activities which have a binding temporal constraints with the
activities already included in U2. The activities in both sets are sorted by non-increasing
resource demands. To make use of the lack of start time restrictions for Si, the activities
in U2 are scheduled after the activities in U1. In each rescheduling step, the next activity j
is taken from the respective set and a set of eligible start times is determined. Firstly, this
set includes all start times which result in a binding precedence constraint with an already
scheduled activity. As it cannot be guaranteed that this set always contains at least one
start time, the updated ESj and LSj are added to the set. This is done instead of assessing
binding temporal constraints, as the predecessors and successors might be in set U2. Out
of the set of eligible start times, the start time Sj is chosen which results in the lowest
increase in resource overload. In case of a tie, the tie-breaker used to create the baseline
schedule is utilized. When the scheduling is complete and a better solution has been found,
the schedule is saved and used for the following improvement attempts.
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4 Experiments

In order to evaluate the performance of our new solution approach, we conduct ex-
periments with the presented method and the genetic algorithm described in Wohlert and
Zimmermann (2023), which are both implemented in C++. The problem instances are
based on the benachmark test sets UBO for the RCPSP/max (Schwindt 1998), where the
maximum project duration is limited with d := ⌈α · ESn+1⌉ and the prescribed project
makespan is chosen as T := ⌊β · ESn+1⌋. The resource thresholds Yk are set according to
the rounded up ratio of the respective total resource utilization and the prescribed project
makespan. The cost factors ck are assumed to be 1 and the delay cost factor ρ is set by
ρ := γ

∑
k∈R Yk. The mutation probability for each gene within the genetic algorithm is

set to 2.5%, the scaling factor to 16 and the population size to 200. For the new solution
approach, a population of the same size is created, where in contrast half of the solutions
are generated with either tie-breaker. Three di�erent variants to obtain set U1 are tested.
Firstly, U1 only consists of the primary activity (strategy i). The other strategies are
horizontal and vertical. Table 1 shows the preliminary results for all U1 strategies with
a runtime of 60s, displaying the average gap (∅gapga) to the best solution obtained by the
genetic algorithm and the number of solutions (#nbest), which are the best alongside all
found for a speci�c instance. In total, there are 90 instances within each test set.

Table 1. Preliminary results

Instances U1 strategy

i horizontal vertical

α β γ n ∅gapga[%] #nbest ∅gapga[%] #nbest ∅gapga[%] #nbest

1.25 1.0 0.3 100 4.86 5 2.52 20 6.37 1

200 �7.19 9 �9.61 79 �5.52 0

500 �22.42 4 �24.79 86 �21.02 0

The results indicate that the best strategy to form U1 is horizontal and that our new
approach is able to obtain considerably better solutions for n ∈ {200, 500} than the genetic
algorithm. The results could be further improved by parallelization, since the improvement
of a solution is independent of the other solutions. For instances with 100 activities, the
improvement method might be more interesting when applied to a later population in the
genetic algorithm.
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