

Integrated Planning of Vehicle Routes and Warehouse Operations

Mariusz Kaleta Warsaw University of Technology Paweł D. Domański Betacom SA

- National Center for Research and Development
- Title: Optimization of large-scale intralogistics processes, the fleet structure and distribution process applying multi-criteria distribution planning algorithms
 Value: €2 900 000
- **Time:** 05/2022 06/2024

Betacom Project & Customers

TELECOMUNICATION | MEDIA

Exatel, Netia, Orange, P4 (Play), Polkomtel (Plus),T-Mobile, Cyfrowy Polsat, NC+

INDUSTRY | TSL | RETAIL

AmRest Holding, Castorama, EDF, ENEA, Ceramika Paradyż, Polski Tytoń, PACCOR, TOKAI COBEX, DHL, Abrasives, Stokrotka , CCC, Selgros , Anwim , Bricoman, AMIC, Mlekovita, Eron Trans, Biedronka

AVIVA, VIG, PZU, Provident, Bank Ochrony Środowiska, Bank Pekao, Citi Handlowy, DNB Bank Polska, ING Bank Śląski, PKO BP, Grupa SGB, Grupa BPS, Raiffeisen Bank, mBank

PUBLIC SECTOR

KNF, Miasto. st. Warszawa, Ministerstwo Finansów, Ministerstwo Skarbu Państwa, Ministerstwo Sprawiedliwości, ZUS, PKN Orlen

Multi-layered decision problem

TacticalVehicle fleet & Drivers (carrying companies vs own resources Pol's time windows													
	Weekly planning and scheduling												
Logistic oper	rations	Intralogistic operations											
Daily plans of operations (and pallets collection) Detailed schedule (routes)	delivery, waste)	Warehouse operations Palletization Storage											
Operational reso	cheduling	Reacting to incidents Rescheduling											

Logistic operations

- Distribution Center
 - Capacities organized in shifts
- Pols
 - Hard and soft time windows with priorities and constraints
- Vehicles
 - Solo (<=21EP)
 - Tractor + Semi-trailer (>21EP)
- Drivers
- Carrying companies
 - Different model costs
- Tasks
 - Volumes of pallet to be distributed
 - > Orders
 - > Allocations
 - Wastes to collect
 - Pallets to collect
- Horizon: week

KPIs

- Number of pallets not delivered
- Total cost
 - Distance
 - Driving time
 - Number of routes
 - ...
- Max and total time of late or early visits
- Pallet picking balance (regarding shift capacity)
- Carrying companies' balance
- Fill in ratio

• • •

Several methods developed simultaneously

requirements

Several methods developed simultaneously

Hard to address changes in requirements

Hard to explain and control the behavior

The greatest flexibility and robustness toward unclear requirements

Coding

Task->route					Tasks order							Ve	ehio	cles	5	Drivers				
							((_	
0	0	0	1	2	2		5	10	8	33	28	2		1	3	9		22	2 15 43	

 Operators (mutations and crossovers) Tasks switching between

Tasks order Resources of a route Mixed routes Modification of task Move request to Change a driver for Get route from another route another solution order on a route a route Change a vehicle Modification of task Swap request order on a subroute between routes for a route Delay or advance Merge routes Change a resurce for unschedule task Merge/split the start of your requests Swap resources route

Genetic algorithm

Task->rout

Coding

Modification order on a Modification order on a subsection Delay or advance the start of your route

Collaboration with ML experts

Predictive models

- Estimators for distances and travel time for different vehicle profiles
- Estimators for loading, unloading and at gate times
- Estimators for order volumes

Merge routes Merge/split requests Change a resurce for unschedule task Swap resources from plution

R&D initial results

Is it good enough?

Is it good enough?

Is it good enough?

- The problem has a multicriteria nature (> 30 KPIs)
- A bundle of solutions

Total cost

On time

Pallet production balance

Intralogistics integration

- Schedule of logistic tasks should be feasible in regard to pallets collection capacities
 - Pallets cannot be prepared too early
 - Space for pallets storage is limited
 - Shifts at DC are not equal
 - Capacity of a shift is not static
- Different attempts to consider intralogistics capacities
 - Simple constraints
 - > Max number of routes per hour
 - > Max number of pallets per hour
 - > Difference between min and max of above
 - Simplified model for intralogistics operations optimization
 - Agent-based model for detailed simulation

Collaboration with ML team More estimators....

Intralogistic and optimization

Perspective #1: INTRALOGISTIC DECISION SUPPORT

analysis of the intralogistic processes and their optimization: picking path planning

Perspective #2: COLLABORATION challenge

- Represent inanimate objects
- Represent active people
- Attributes based on data (geo-spatial model)
- Manipulate and use data
- Use data for planning
- Their functionality determines actions and sequence

INTERACTIONS

- Set of possible actions and methods for data exchange
- Cooperation with other agents
- Introduction of the concept of time and action in time
- Actions in space
- Calibration with respect to reality
- Learning ability :: adaptation and evolution
- Deterministic action
- Stochastic models of uncertainty

ENVIRONMENT

- Virtual world for agents
- Passive element
- Geo-spatial model
 - warehouse
 - road network
 - stadium or plane plan

- Scalable and explainable model
- Homogeneous approach to intralogistics and transport network
- Agents' self-adaptation using machine learning
- Data analytics (what-if)
- Analysis in various perspectives: time, space, complexity
- Allows optimization (decision-making support) both static (off-line) and dynamic (on-line)
- Statistical models for uncertainty risk analysis

WAREHOUSE SIMULATION

Summary

- Crucial moments and decisions
 - Building common interfaces and models at the beginning with software engineers
 - Choosing an evolutionary algorithm for VRP, robust regarding changing business requirements (importance of a hot-start)
 - ML involved estimators with well-defined interfaces
 - Process engineering involved understanding the current process and common points
- Potentially crucial decisions
 - Agent-based warehouse operations model
- Potential obstacles
 - Process convergency not yet proved

Thank you for your attention!

Mariusz Kaleta Warsaw University of Technology Paweł D. Domański Betacom SA