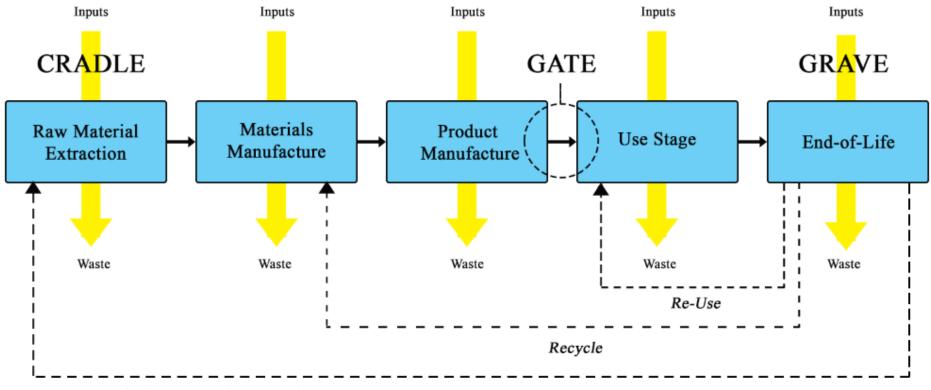


OR in Collaboration EURO Practitioners' Forum 5th Annual Conference Coimbra, October 14-15, 2024

Weighting life cycle environmental impacts

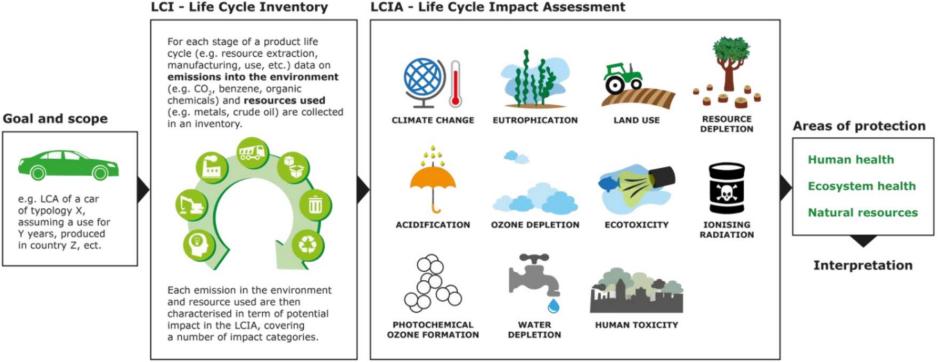
Luis C. Dias University of Coimbra

OR in collaboration


Life cycle assessment field (sustainability and environmental sciences)

Industrial ecology

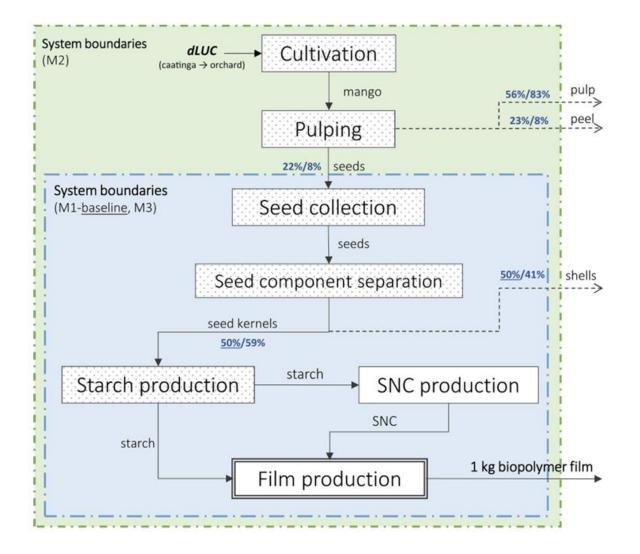
Impacts valuation (economics)


MCDA Multi-criteria Decision Analysis (OR/MS)

Life cycle of a product or system

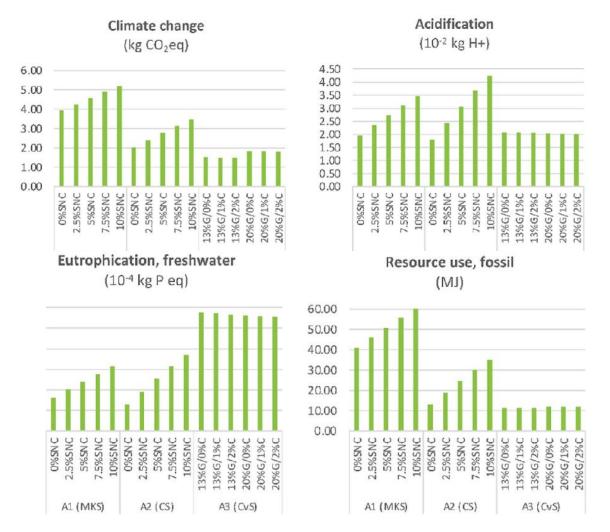
Ecological Loop (Cradle-to-Cradle)

Life cycle assessment (LCA) stages

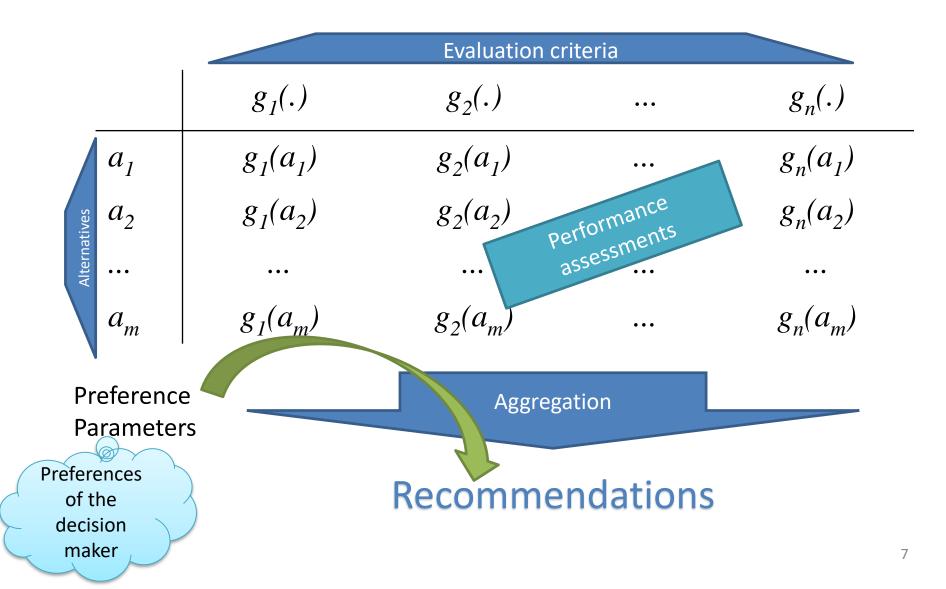


LCIA - Life Cycle Impact Assessment

Source:


European Commission: Joint Research Centre, Cristobal-Garcia, J., Pant, R., Reale, F. and Sala, S., Life cycle assessment for the impact assessment of policies, Publications Office, 2016, https://data.europa.eu/doi/10.2788/318544

Example: starch films for food packaging


Müller-Carneiro, J., de Figueirêdo, M. C. B., Rodrigues, C., de Azeredo, H. M. C., & Freire, F. (2023). Ex-ante life cycle assessment framework and application to a nano-reinforced biopolymer film based on mango kernel. *Resources, Conservation and Recycling*, *188*, 106637.

Example: comparison of films for food packaging

Müller-Carneiro, J., Rodrigues, C., Dias, L. C., Antunes, C. H., Mattos, A. L., & Freire, F. (2023). A multi-criteria framework for the ecodesign of bio-based materials at early development stages. *Journal of Cleaner Production*, *427*, 139268.

A good client for MCDA application?

A good client for MCDA application?

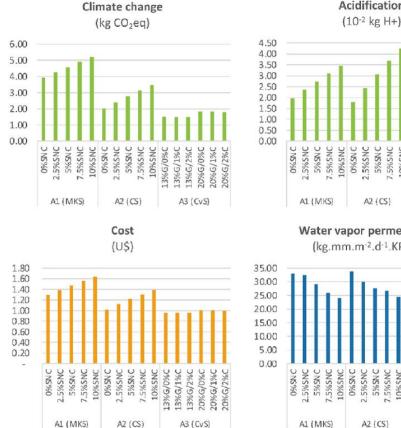
Yes, but...

MCDA typically requires	but LCA practitioners often wish
Several alternatives being assessed (to select, to rank)	To assess a single system
Decision-maker(s) who state their preferences	To reach conclusions without a decision maker
Criteria weights elicited from decision makers	To perform a weighting of impacts "backed by science"
Discussing the type of MCDA aggregation: compensatory (additive value, AHP,) vs. other methods (ELECTRE, PROMETHEE, TOPSIS,)	To multiply impacts by weights (what else?)

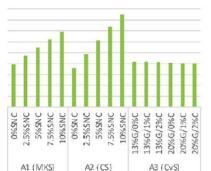
Perspectives on weighting

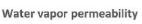
Weights reflect the preferences of the decision makers, so that the recommendation suits them as well as possible. Weighs are derived from a dialogue between them and the MCDA analyst

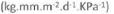
Weighting is optional and should not be used if the analysis intends to inform the public

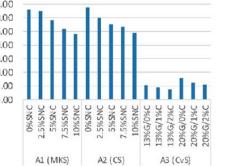

Weighting can inform decision makers to find hotspots and make comparisons. Weights can be derived from:

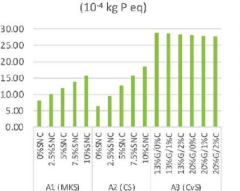
- The data (e.g. data entropy)
- Physical considerations (e.g. considering planetary boundaries)
- Economic considerations (e.g., abatement cost)
- Society's preferences (e.g., conjoint analysis)
- Decision makers, stakeholders, experts (MCDA)

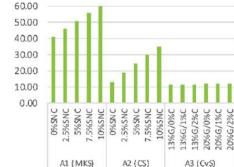

Müller-Carneiro, J., Rodrigues, C., Dias, L. C., Antunes, C. H., Mattos, A. L., & Freire, F. (2023). A multi-criteria framework for the ecodesign of bio-based materials at early development stages. *Journal of Cleaner Production*, *427*, 139268.

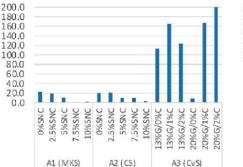

- Comparison of films for food packaging (polyethylene vs biofilms)
- 16 alternatives/variants, some experimental (low TRL)
- LCA indicators + technical criteria + costs
- Additive aggregation model
- 3 decision-makers (DMs) of an R&D institute
- Weights were elicited from the DMs

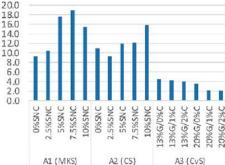


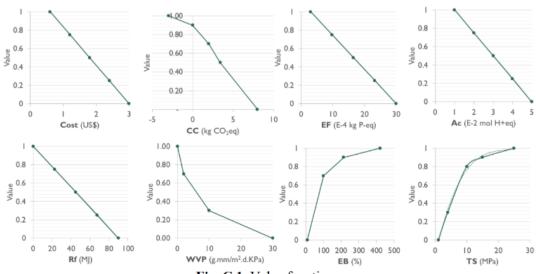



Acidification



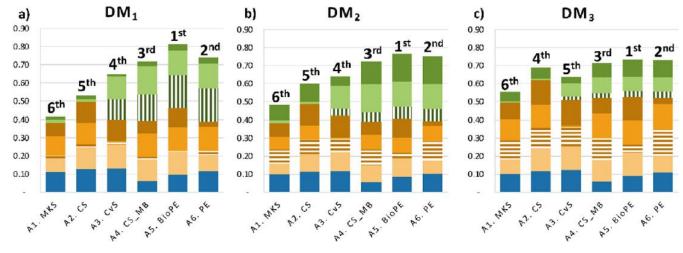

Eutrophication, freshwater


Resource use, fossil


(MJ)

Elongation at break (%)

Tensile strength (MPa)



Additive value function model

Fig. C.1. Value functions

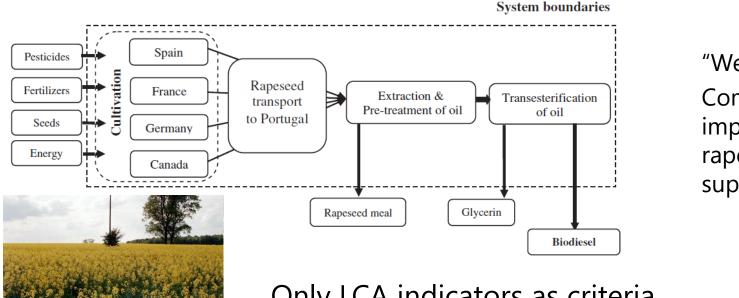

Criterion	Indicator	Unit	v=0			k			
	Indicator		v-0	v=1	DM_1	DM_2	DM ₃	Average	
j1	Cost	US\$	3	0.6	0.15	0.14	0.14	0.14	
j2	Climate change (CC)	kg CO₂ eq	8	-3	0.17	0.14	0.18	0.16	
j3	Acidification (Ac)	E-2 mol H+ eq	5	1	0.02	0.10	0.14	0.09	
j4	Eutrophication, freshwater (EF)	E-4 kg P-eq	30	3	0.13	0.09	0.14	0.12	
j5	Resource use, fossil (Rf)	MJ	90	0	0.13	0.14	0.16	0.14	
j6	Water vapor permeability (WVP)	g.mm.m ⁻² .d ⁻¹ . KPa ⁻¹	30	0.08	0.19	0.07	0.04	0.10	
j7	Elongation at break (EB)	%	9	420	0.15	0.16	0.09	0.13	
j8	Tensile strength (TS)	MPa	1	25	0.04	0.17	0.11	0.11	
Total poir	nts				1.00	1.00	1.00	1.00	

Table C.1. Scaling coefficients (k) for each decision maker (DM) and average

d) **DMs** average 0.90 3rd 1st 2nd 0.80 4th 0.70 5th 0.60 6th 0.50 0.40 0.30 0.20 0.10 14. CS . MB 45. B1095 AT. WAYS 22.5 4°. C. S. RG. Ptc

Dias, L. C., Passeira, C., Malça, J., & Freire, F. (2022). Integrating life-cycle assessment and multi-criteria decision analysis to compare alternative biodiesel chains. *Annals of Operations Research*, 312, 1359–1374.

"Well-to-Tank" Comparison of imported rapeseed supply chains

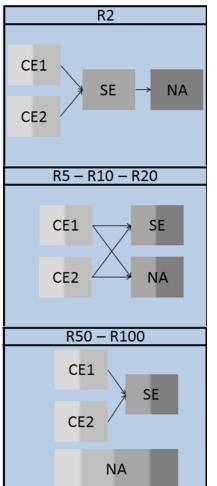
Only LCA indicators as criteria Additive aggregation model No decision maker Stochastic weights and robustness analysis

LCA (CML 2001)		GW	AD	Ac	Eu	OLD	РО
AD Abiotic depletion		(kg CO _{2,eq})	(kg Sb _{eq})	(kg SO _{2,eq})	(kg PO _{4 eq})	(kg CFC _{11 eq})	(kg C ₂ H ₄ eq)
Ac Acidification Eu Eutrophication	CE1	4,84E-02	2,54E-04	4,52E-04	3,14E-04	4,48E-09	4,75E-06
GW Global warming	NA	4,67E-02	2,67E-04	6,16E-04	4,03E-04	6,59E-09	8,04E-06
OLD Ozone layer depletion PO Photochemical oxidation	SE	5,26E-02	2,77E-04	5,86E-04	4,37E-04	6,02E-09	4,87E-06
	CE2	4,81E-02	2,18E-04	4,91E-04	4,14E-04	4,31E-09	3,64E-06
$u_{ij} = \frac{x_{ref,j} - x_{ij}}{x_{ref,j}}$							
		GWP	AD	Ac	Eu	OLD	PO
	CE1	-0.037	0.05	0 0.26	7 0.22	1 0.321	0.409
and I the	NA	0.000	0.00	0.00	0 0.00	0.000	0.000
	SE	-0.126	-0.03	7 0.05	0 -0.08	5 0.087	0.394
	CE2	-0.031	0.18	5 0.20	4 -0.02	8 0.346	0.548

Additive value model:

$$V(a) = \sum_{j=1}^{n} w_j v_j(a_j)$$

No specific weights vector was set, but the following restrictions were considered:


$$w_j / w_k \le r, \qquad \forall j, k$$

 $w_1, \dots, w_n \ge 0$

i.e., the criteria have similar roles (all are treated in the same way), but not necessarily the same weights Analyses:

- Extreme ranges and value differences (robustness analysis)
- Weights Monte-Carlo simulation (stochastic analysis)

Winning probability, maximum advantage, and robust rankings

		CE1	NA	SE	CE2
	CE1		100% 0.247	100% 0.189	52.22% 0.040
R2	NA	0% -0.155		0% -0.004	0% -0.146
	SE	0% -0.127	100% 0.097		0% -0.137
	CE2	47.78% 0.033	100% 0.265	100% 0.178	
		CE1	NA	SE	CE2
	CE1		100% 0.360	100% 0.271	47.55% 0.190
R20	NA	0% -0.021		20.15% 0.085	0% -0.002
	SE	0% -0.049	79.85% 0.311		0% -0.081
	CE2	52.45% 0.118	100% 0.465	100% 0.235	
		CE1	NA	SE	CE2
	CE1		99.9995% 0.397	100% 0.298	46.96% 0.235
R100	NA	0.0005% 0.023		23,74% 0.116	0.0097% 0.023
	SE	0% -0.023	76.26% 0.374		0% -0.063
	CE2	53.04% 0.131	99.9903% 0.528	100% 0.253	

17

Bayazıt Subaşı, A., Askham, C., Sandorf, E.D., Dias, L.C., Campbell, D., Taş, E.F., Itsubo, N., Nagawa, C.B., Kyarimpa, C.M., Djerma, M. & Bazie, B.S.R. (2024). Weighting factors for LCA—a new set from a global survey. *Int J of Life Cycle Assessment*, forthcoming

- To derive global weights for the three endpoint impact categories of the United Nations Environment Programme (UNEP) Life Cycle Initiative's "Global Guidance for Life Cycle Impact Assessment Indicators and Methods" (GLAM) project
- Discrete choice experiment with population samples from a subset of countries with different income level
- Econometric approach: multinomial logit model
- MCDA approach: inference of an additive value function for each individual (linear optimization)

Example of a choice card

human health

ecosystem quality

natural resources and ecosystem services

			R eference scenario		Scenario	01		Scenario 2			
tal design			HH	EQ	NRandES	HH	EQ	NRandES	нн	EQ	NRandES
rimental design	Block 1	ct_2	0	0	0	1	-1	-0.75	-0.75	1	-0.75
hree blocks of		ct_10	0	0	0	-1	0.25	-0.75	0.75	- 1	1
		ct_11	0	0	0	0.25	1	-0.25	-1	- 1	1
choice tasks		ct_12	0	0	0	0.5	0.75	-0.5	1	-1	-1
		ct_16 ct_18	0 0	0 0	0	1 -0.25	- 0.75 - 1	-0.75 1	-1 -1	1	- 0.75 1
		ct_18	0	0	0	-0.25	- 0.25	0.75	-1	1	-1
		ct_26	0	0	0	0.75	0.75	-1	-1	-1	0.75
F		ct_27	0	0	0	- 1	1	0.75	1	0.75	-0.25
ndents,	Block 2	ct_4	0	0	0	-0.75	- 1	0.75	- 1	1	1
		ct_5	0	0	0	- 1	1	-1	1	-0.25	-1
omly		ct_8	0	0	0	-1	0.25	1	1	-1	0.75
nted to one		ct_9 ct_14	0 0	0 0	0	0.75 1	1 0.75	-1 -1	-1 1	1 -0.5	1
		ct_14 ct_15	0	0	0	0.25	-1	-1 -1	- 0.25	-0.5 1	1
olocks		ct_17	0	0	0	0.5	1	-0.75	-1	-1	1
			0	0	0	- 1	1	-0.75	1	0.75	-0.75
		ct_21	0	0	0	- 1	-0.25	1	1	- 1	-0.5
	Block 3	ct_1	0	0	0	1	1	- 1	1	- 1	1
		ct_3	0	0	0	0.25	-1	- 1	-0.75	- 1	1
		ct_6	0	0	0	-1	1	1	0.25 -0.75	-1	-1
		ct_7 ct_13	0 0	0 0	0 0	1 -0.75	-0.25 1	1 1	-0.75 -0.25	1 0.75	-0.75 1
		ct_13	0	0	0	-0.75	0.75	0.75	-0.23	1	-1
		ct_22	0	0	0	0.75	1	-1	1	-1	1
		ct_24	0	0	0	1	-1	-1	0.25	0.75	-1
		ct_25	0	0	0	0.75	- 1	1	-0.75	1	-1

Inferred econometric model (multinomial logit regression)	Human Health	Ecosystem Quality	Natural Resources & Ecosystem Services
All income groups	0.42 [0.41, 0.43]	0.31 [0.30, 0.32]	0.26 [0.25, 0.28]
High-income group	0.34 [0.32, 0.36]	0.41 [0.40, 0.43]	0.25 [0.23, 0.27]
Upper-middle-income group	0.36 [0.35, 0.38]	0.36 [0.35, 0.37]	0.28 [0.27, 0.29]
Lower-middle-income group	0.36 [0.35, 0.38]	0.32 [0.30, 0.33]	0.32 [0.31, 0.34]
Low-income group	0.54 [0.51, 0.56]	0.24 [0.23, 0.26]	0.22 [0.20, 0.24]

Inferred MCDA model (linear variant, using LP)	Human Health	Ecosystem Quality	Natural Resources & Ecosystem Services
All income groups	0.41 [0.40, 0.42]	0.32 [0.32, 0.33]	0.27 [0.26, 0.27]
High-income group	0.36 [0.34, 0.37]	0.39 [0.37, 0.4]	0.26 [0.24, 0.27]
Upper-middle-income group	0.39 [0.38, 0.40]	0.33 [0.32, 0.34]	0.28 [0.26, 0.29]
Lower-middle-income group	0.39 [0.38, 0.40]	0.31 [0.29, 0.32]	0.31 [0.29, 0.32]
Low-income group	0.48 [0.47, 0.49]	0.27 [0.26, 0.29]	0.25 [0.23, 0.26]

Population-adjusted	Human Health	Ecosystem Quality	Natural Resources & Ecosystem Services		
Econometric	0.37	0.34	0.29		
MCDA Linear	0.39	0.33	0.29		

Some takeaways

- Challenging problems need OR in collaboration
- OR tools such as MCDA, simulation, robustness analysis and model inference
 - Were helpful in this context
 - Its essence was not hard to communicate
- But this type of intervention is prone to epistemological / philosophical divergence

Keeping an open mind is essential For the best collaboration, OR experts need to assess their ignorance and learn about the other fields