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Context

Business model

Ads are served before or during a video content

Advertisers can buy a given number of impressions (=1 ad) for the next weeks

=>» Need a good estimate of this quantity
=>» Time series forecast

=» Can be achieved with standard Data science / ML/ statistics techniques
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Context
Targeting

Advertisers are interested in a specific part of the population
« Socio demo characteristics éD\/
« (Geolocation 18-25 L( @
« Buyers of product

Or any combination of categories: « women between 18 and 25 who are pet owners and live in Paris or Marseille».

— Need to compute the number of impressions for these requests
« Tenmillionimpressions per week
« Millions of users with data
« Around 10000 user features (pet owners, men, ...)
« Around 100ms to provide a good estimate

— Need fast algorithms

hexaly | 4




Count distinct problem
Exact algorithm

Given amultiset S, estimate the number of distinct elements
- Eg:S={a abc b a} - distinctelements {a, b, c}
« EXxactalgorithm:
» |terate over all the elements and add them to a set

« Complexity O(Nlog(N)) and 0(n) memory footprint

Business problem
 Consider all the impressions in the past months satisfying the user request (« pet owners between 18-25 »)
« Estimate the probability of satisfying the request

« Problem: we need to scan the whole database for each request
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Count distinct problem
Approximate counting

Given a multiset S, estimate the number of distinct elements
-« Eg:S={aabcbal - 3distinctelements {a, b, c}
- Hyperloglog algoritnm [Flajolet et al. 2007]:
 Foreachelementx € S
« Compute hash(x) — gives a b4 bits string, e.g. « hash(a) = 0010011 ...»

+ Keep the number of leading zeros, e.g. 2 zeros

- Keep the maximum number of leading zeros Iz and return 2%

« Complexity O(N) with N the size of the multiset and 0 (log(log(n)) memory footprint
« Huge variance — can be reduced by averaging — theoretical guarantees
« Low memory footprint (~8bits for 1z)

 Problem: still need to scan the whole database ®
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Approximate counting
Count distinct problem

Given 2 multisets §;, S, estimate the number of distinct elements of S; U S,
- Eg:S, =[{a,abjands, ={c b a} —» 3distinct elements {a, b, c}
« Compute the number of leading zeros for §; — lz;, same for S, = 1z,

 Uselz « max(lzq,lz,) to estimate the number of distinct elementsof S; U S,

Business problem
«  We can precompute Iz for each feature independently ~10°000 values in a few hours
« Wecancompute |JAU B|in0(1)
« Wecancompute |AnB| =|AUB|—|A| —|B|
« «Women between 18 and 25 who are pet owners and live in Paris or Marseille» - CNF
« Practical results are better than the theoretical guarantees

« (Can be extended to consider booked requests
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Optimization problem

Consider a total of 7000 impressions next week
« Advertiser Twants to book 500 impressions without any restrictions
- Advertiser 2 wants to book 500 impressions of “Women” (50% of the impression)

«  Without optimization, Advertiser 1T will take 250 "Women” impressions

Adv. 1

Adv. 1 ) Adv. 2
Adv. 2

Men Women

All the booked requests are reoptimized overnight using a greedy algorithm
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Conclusion

Industrial project
« Inproduction for 2 years now

« Used every day by multiple users

Project management
« Tight collaboration with the data science team

« Tight collaboration with business experts/end users

Optimization perspectives
« Use of approximate counting in optimization
« Faster approximate algorithms for Max-k-coverage and Min-k-union

« Compact models for these problems
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