OR / Data science in online advertising

Julien Darlay

EURO Practitioners' Forum

www.hexaly.com

hexaly

Software company specialized in Mathematical Optimization, Operations Research, and Decision Science

- Powerful optimization solver & platform
 used by Amazon, FedEx, Starbucks, ...
- Turnkey, custom optimization and planning applications for Air Liquide, Toyota, ...

The fastest and most scalable solver for Routing, Scheduling, Packing, and more

> 20 years of experience

200 clients, 400 applications, and 20,000 users in 25 countries

> Offices in Brooklyn, NY, and Paris, France

hexaly

Context

Business model

Ads are served before or during a video content

Advertisers can buy a given number of impressions (=1 ad) for the next weeks

- ➔ Need a good estimate of this quantity
- ➔ Time series forecast
- → Can be achieved with standard Data science / ML / statistics techniques

Context Targeting

Advertisers are interested in a specific part of the population

- Socio demo characteristics
- Geolocation
- Buyers of product

Or any combination of categories: « Women between 18 and 25 who are pet owners and live in Paris or Marseille».

 \rightarrow Need to compute the number of impressions for these requests

- Ten million impressions per week
- Millions of users with data
- Around 10000 user features (pet owners, men, ...)
- Around 100ms to provide a good estimate
- → Need fast algorithms

Count distinct problem

Exact algorithm

Given a multiset *S*, estimate the number of distinct elements

- Eg.: *S* ={a, a, b, c, b, a } → distinct elements {a, b, c}
- Exact algorithm:
 - Iterate over all the elements and add them to a set
 - Complexity O(Nlog(N)) and O(n) memory footprint

Business problem

- Consider all the impressions in the past months satisfying the user request (« pet owners between 18-25… »)
- Estimate the probability of satisfying the request
- <u>Problem</u>: we need to scan the whole database for each request

Count distinct problem

Approximate counting

Given a multiset *S*, estimate the number of distinct elements

- E.g.: $S = \{a, a, b, c, b, a\} \rightarrow 3 \text{ distinct elements } \{a, b, c\}$
- Hyperloglog algorithm [Flajolet et al. 2007]:
 - For each element $x \in S$
 - Compute $hash(x) \rightarrow gives a 64$ bits string, e.g. « $hash(a) = 0010011 \dots$ »
 - Keep the number of <u>leading zeros</u>, e.g. 2 zeros
 - Keep the maximum number of leading zeros lz and return 2^{lz}
 - Complexity O(N) with N the size of the multiset and $O(\log(\log(n)))$ memory footprint
- Huge variance \rightarrow can be reduced by averaging \rightarrow theoretical guarantees
- Low memory footprint (~8bits for Iz)
- <u>Problem</u>: still need to scan the whole database \otimes

Approximate counting

Count distinct problem

Given 2 multisets S_1 , S_2 estimate the number of distinct elements of $S_1 \cup S_2$

- Eg.: $S_1 = \{a, a, b\}$ and $S_2 = \{c, b, a\} \rightarrow 3$ distinct elements $\{a, b, c\}$
- Compute the number of leading zeros for $S_1 o lz_1$, same for $S_2 o lz_2$
- Use $lz \leftarrow max(lz_1, lz_2)$ to estimate the number of distinct elements of $S_1 \cup S_2$

Business problem

- We can precompute lz for each feature independently ~10'000 values in a few hours
- We can compute $|A \cup B|$ in O(1)
- We can compute $|A \cap B| = |A \cup B| |A| |B|$
- « Women between 18 and 25 who are pet owners and live in Paris or Marseille» \rightarrow CNF
- Practical results are better than the theoretical guarantees
- Can be extended to consider booked requests

Optimization problem

Consider a total of 1'000 impressions next week

- Advertiser 1 wants to book 500 impressions without any restrictions
- Advertiser 2 wants to book 500 impressions of "Women" (50% of the impression)
- Without optimization, Advertiser 1 will take 250 "Women" impressions

All the booked requests are reoptimized overnight using a greedy algorithm

Conclusion

Industrial project

- In production for 2 years now
- Used every day by multiple users

Project management

- Tight collaboration with the data science team
- Tight collaboration with business experts/end users

Optimization perspectives

- Use of approximate counting in optimization
- Faster approximate algorithms for Max-k-coverage and Min-k-union
- Compact models for these problems

SCHEDULING

										Π													Τ					Τ		Π													
				Τ																																							
																																										-	
						Π							Γ						Π		Ι			Τ	Π												Π			\square			
																							Π									Π											
														_																													
								Ι]	1												Π																Π		
									Π					Τ									Π		Τ						Π	Τ		Π		T	Τ	Π					
Π		Γ	Π	Π	Π	Τ	Τ				Τ				Τ		Π	T	Π			Π		Τ	Γ	Π	1		Π		Π		Τ	Π		П			Π				
		Π														Π			Ι	Π						Τ	Π							Π									
				 																												 	_						-			_	

Questions?

PACKING

hexaly

200 companies trust us

amazon	chewy	SONY	Φ ΤΟΥΟΤΑ	<table-cell-rows> REPJOL</table-cell-rows>	Air Liquide	AIRBUS
J.B. HUNT		GROUPE RENAULT	DSV	TotalEnergies	BOSCH	edf
	COLAS	SoftBank	KIRIN	engie	FedEx	
Beiersdorf	P&G	CEZ GROUP	SNCF		JCDecaux	accenture
ESL group	EVERYTABLE	GÐ GERDAU	PLANZER	swissport 🔶	CHU de Québec	
Pasco	ROHM	FUJITSU	LAPOSTE	SITA	CMA CGM	kau6ka