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OR impacts every

. patient, because
III Raletherapy OR is in the core

of radiotherapy

* Used for cancer patients, with curs treatment
nent planning!

* At least 50% of all the cancer patients wi
submitted to radiotherapy treatments

* In Europe alone, near 2 million patients are treated
per year

* There are different treatment modalities:

* Intensity Modulated Radiation Therapy (IMRT)
Volumetric Modulated Arc Therapy (VMAT)
Protons

Brachytherapy










Problem
description

What are the angles/arcs that should
be used? What should be the patient
couch position?

What should be the radiation
intensities (fluence maps)?

What should be the leaf sequencing?
How should the leaves move so that
the desired fluence maps are
obtained?
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V Trial and error procedure

Treatment planning

Objective:
achieving fully automated
radiotherapy treatment plans

Lengthy process

The quality is highly
dependent on the

planner’s time availability
and experience.
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 Doses that should be delivered to the volumes to treat

I\/I ed |Ca‘ (PTV —Planning Target Volume)
p reSC I’I pt | O n * Dose limits for the OARs - organs at risk

Structure Type of constraint Limit

Spinal cord Maximum dose Lower than 45 Gy

Brainstem Maximum dose Lower than 54 Gy

Left parotid Mean dose Lower than 26 Gy

Right parotid Mean dose Lower than 26 Gy

PTV Dys0, Greater than 66.5 Gy

PTV7 Maximum dose Lower than 749 Gy

PTVs Dyso,, Greater than 56.4 Gy

PTV., Vi 070 I ower than Percentage of PTV, volume inside PTVs, plus

a 10% margin
Body Maximum dose Lower than 80 Gy




Fractional volume

Dose volume histograms
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Fractional volume

Dose volume histograms
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Treatment Planning System

* Mathematical Optimisation
* Dose computation
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I\/I ed |Ca‘ (PTV —Planning Target Volume)
p reSC I’I pt | O n * Dose limits for the OARs - organs at risk

Structure Type of constraint Limit

Spinal cord Maximum dose Lower than 45 Gy

Brainstem Maximum dose Lower than 54 Gy
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Optimal or admissible? Inverse Optimisation!

* We know what we want to achieve:
compliance with the medical prescription.

* We are unsure of the path to reach this
goal.

* Therefore, we are seeking an admissible
solution for a highly constrained problem,
but...

* If possible, we aim to exceed the
established constraints!



We are thrilled!! We
were able to improve
the value of our

objective function
around 10%!!!




Non-linearities in constraints and
objectives.

Several and conflicting objectives.

Uncertainties: robust optimization.

Very large problems, very large
matrixes.

All the
ingredients
for a very

sliiile
orob

Ult

em
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Non-linearities in constraints and
objectives.

Several and conflicting objectives.

Uncertainties: robust optimization.

Very large problems, very large
matrixes.

All the
ingredients
for a very

sliiile
orob

Ult
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OR toolbox

* Mathematical Modelling

* Exact optimization approaches
e Heuristics/Metaheuristics

e Simulation

 Statistics

* Machine Learning




CEJOR (2014) 22:431-455
DOI 10.1007/s10100-013-0289-4

ORIGINAL PAPER

A genetic algorithm with neural network fitness
function evaluation for IMRT beam angle optimization

Joana Dias - Humberto Rocha -
Brigida Ferreira - Maria do Carmo Lopes




Machine Learning W§tOR?
ORI

Neural networks can be used as function approximators
when dealing with expensive objective functions

Machine learning can make optimization algorithms run
faster (parameter optimization, initial solution...).

Machine learning can help in the algorithmic choice.




Problem
description

What are the angles/arcs that should
be used? What should be the patient
couch position?

What should be the radiation
intensities (fluence maps)?

What should be the leaf sequencing?
How should the leaves move so that
the desired fluence maps are
obtained?



Fluence Map Optimisation
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* Minimise the squared deviations from the desired dosimetric values for each
structure of volume.

* A considerable number of parameters that must be tuned.



MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

Therapeutic interventions

Automated fluence map optimization based on fuzzy inf
systems

Joana Dias, Humberto Rocha, Tiago Ventura, Brigida Ferreira, Maria do Carmo Lopes

First published: 05 February 2016 | https://doi.org/10.1118/1.4941007



Quadratic Programming
Optimization Problem

Fluence Map

Fuzzy Inference Systems

Optimization




Quadratic Programming
Optimization Problem

Fluence Map

Fuzzy Inference Systems

Optimization

Reinforcement learning to learn
the best fuzzy rules
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Instead of predefining the membership functions

that represent these concepts, these functions can
be optimized and dinamically changed as the
optimization algorithm progresses!

Percentage of change

Percentage of deviation
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If deviation 1s /arge then the changc in the bound should be /arge.




Reinforcement
Learning ~Classical
conditioning theory

WATCH WHAT I CAN
MAKE PAVLOV DO.
| AS SOON AS I DROOL,
| HE'LL SMILE AND WRITE
\ INHISLITTLE BOOK.




UNDEFINED AMOUNT OF TIME

INITIALIZE Q-TABLE

CHOOSE AN ACTION

PERFORM THE ACTION

MEASURE REWARD

UPDATE Q-TABLE

EXPLORATION

Explore the environment
Randomly choose an action

EXPLOITATION

Some knowledge of the
environment already exists
Increased confidence on the
current Q-Table

Choose actions based on Q-
table




Action 1 Action 2

State 1

State 2

State 3
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UsSE Q-TABLE FOR
DECISION MAKING




. The structure is complying with the medical prescription.

. The structure is not respecting dose constraints by less than 10%.

. The structure is not respecting dose constraints by more than 10%.

. Use fuzzy rules defined by set 1 to change the parameters of the FMO model.

. Use fuzzy rules defined by set 2 to change the parameters of the FMO model.

EXISTING STATES

POSSIBLE ACTIONS
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Results: Our original approach had already proven to be able to obtain high quality treatment plans.

WITH THE INCLUSION OF Q-LEARNING, FUZZY RULES ARE DYNAMICALLY CHANGED AS THE
ALGORITHM PROGRESSES, INSTEAD OF BEING FIXED.

This has led to a decrease in the total number of iterations needed to reach a treatment
plan complying with the medical prescription.

Average values considering Cross Validation show a reduction in the total number of iterations ranging from

50% to 63%.

Conclusion: Automated treatment planning can be achieved by combining ML with optimization models and
algorithms.

In this work an ensemble approach joining RL, optimization and fuzzy inference systems is presented for
fully automated treatment planning WITHOUT RESORTING TO LARGE TRAINING DATASETS.



Reinforcement learning, as well as other ML approaches, can be naturally
integrated with OR models and methods.

Difficult and interdisciplinary real world problems will gain with the integrated
use of different tools.

Machine learning is just one more tool that Operations Researchers can/should
use. It is not the holy grail for all existing problems.

So many new avenues for research and for tackling real world problems!




Have an open mind and be willing to learn.

Operations
Resea rcn an d points of view.
mu tld ISCI p l nd ry @) Understand what is really important: what will be
CO | a b O rat ' on | N = the results that can make the difference.
re a | WO rl d Incorporate existing knowledge into OR way of
" " thinking.
applications :

Step into the others’ shoes and understand other

Be flexible and use the most adequate tools.




Radiotherapy Treatment Planning
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