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Flix as a Tech Company

Flix is not that much of a bus company as it is a Tech company

To achieve that, there are a large number of tech solutions for Automation and Optimisation



Revenue Management department at Flix

GOAL: automatically offer the best price for every passenger, in real time and for the full network

Revenue
Management

o4 Teach Teams + 2 Business Teams

ecach with 5 to 10 members:
- data scientists
- data engineers
- data analysts
- product and business owners
- agile coaches

- people managers




Revenue Management department at Flix

GOAL: automatically offer the best price for every passenger, in real time and for the full network

Optimisation Revenue

Price Calculation
Management

o4 Teach Teams + 2 Business Teams

—) eeach with 5 to 10 members:

- data scientists

- data engineers

- data analysts

- product and business owners
- agile coaches

- people managers

Forecast Ul tools

Analytics and
Operations Research
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Flix Network:
the scale of our problem



The scale of our problem




The scale of our problem
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Challenge: build a pricing automation solution with a focus on scalability
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Pricing automation at Flix



Revenue Management System (RMS)
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Revenue Management System (RMS)

Price Engine

Offered
Price

-

Past bookings Forecast Optimisation




Forecast

HISTORICAL SALES
for a connection Origin-Destination

Sold
Tickets

Jan Feb Mar Apr May Jun Jul Ago Sep Oct Nov Dec

Bus departure day

Should we use classical Time Series analysis?
NO
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e We need a model that;:

- contemplates the dimension
Days before departure
(needed for optimisation)

- can learn from
multiple connections at once

(good for generalisation)

«We opt for a tabular
Machine Learning approach



Machine Learning approach

Features (X) Target (y)

Observed Features (predictors):
sales - price
over the - calendar (for seasonality)
last - connection (origin and destination)
400 days - days before departure
- how many sales so far
Demand 4 D decays Target:
exponentially - demand (~ tickets)

with P

» Price



Forecast Output

Demand 4

Granular

predictions are
provided for every
ride-city connection-
prebooking period

Exponential
Demand Curve

is assumed, for
which the price
dimension is
learned separately.

D decays

exponentially

with P

» Price

Universal

same approach for
the entire network

Tabular
Machine Learning

(tree-based algorithms)
to accommodate the high
diversity and the non-
linearities of the data

Scalable

the application runs
regardless of the
size of the network

Tailored for Price
optimisation
to compute the
revenue optimized

prices at any given
time




Optimisation

« Perride

- Recomputed every day stops ' Segment 1 . Segment 2 |

 Also upon network changes or
unexpected demand changes _> —>
—

connections

LOOK UP TABLE L LOOK UP TABLE
Deterministic
Machine For every connection Linear For every remaining
Learning and every Program capacity in every ride

segment:

*Bid prices per segment
Optimisation

* Minimum price per connection

time before departure,
estimates of:
e Number of customers
*Their Willingness to pay
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Validation of changes
in the

pricing automation system



Validation of changes in the Pricing automation system

2 types of changes: The aim is:

Pipeline
P _ ... to proof that the change
Refactoring,
leaves revenue unharmed

Maintenance

Experimental
P * ... to proof that the change
Pricing : :
brings a revenue uplift

Policies

All methods rely on defining CONTROL and TREATMENT groups, and compare their revenues.



defining CONTROL and TREATMENT groups

3 types of experiments:

Partial Roll Out Geographical a representative subset of the network

Chessboard Test Temporal rides departing in alternate dates

a randomly chosen subset of customers

AB Test Customers buying tickets




Bayesian analysis of the Revenue Uplift

|deally, only the PRICING POLICY changes between
CONTROL and TREATMENT

18.1% 81.9%

28 30 32
Ticket Price

-10 0 10
Revenue Uplift [%]

0.085 0.090
Conversion Rate

R treatment - R control

GAMMA distributed BETA distributed uplift =
R control



Main TAKEAWAYS

Flix is a Tech company in hyper growth mode.
Automation in Revenue Management is key.

Scalable Pricing Automation engine based on a
Machine Learning Forecast and Ride Revenue Optimisation.

Statistical methods to properly evaluate revenue impact of
any change in the automation pipeline.







