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Agenda

• What is FICO® Decision Optimizer? 

• FICO® Action Effect Modeling Methodology

• Loan Default Rate Prediction

• Conclusions
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FICO, Decision Optimizer and the Decision Apps

• FICO® Decision Optimizer (DO) is a Decision App. It combines easy to use data processing and analytic model 
artefact tooling which automates the generation of simulation or optimization of business decisions.

• reads input data from CSV or SQL database, automatically extracting data schema and columns statistics

• allows users to create high level mathematical expressions

• offers common analytic model file artefact processing

• determines how to convert the business actions into variables that can be optimized or simulated.

• Empowers business analyst with a tool than can be used to automatically create assignment problems that 
can process commonly used analytic model artefacts.

What is FICO® Decision Optimizer?
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FICO® Decision Optimization: From Data to Deployment

Data
Action-Effect 

Modelling
Mathematical 
Optimization

Strategy 
Selection

Deployment

Continuous Learning & Improvement

var1 var2 var3 var4

2 963.28 12395.42 15000

2 51.03 1679.45 12000

2 798.90 10177.84 10000

2 25.79 414.45 13500

2 49.66 188.52 11000

2 312.39 6721.70 7000

4 329.55 4049.40 6500

2 56.26 527.57 11500



© 2023 Fair Isaac Corporation. Confidential. This presentation is provided for the recipient 
only and cannot be reproduced or shared without  Fair Isaac Corporat ion’s express consent . 5

What is an Action Effect Model?

Action Effect Models predict how 
different segments react to the action, 
e.g. loan take up rate by customer 
price:

• Low Score, High response

• High Score, Low response

Scope: 

• Estimate Target score in response to Action values, and the inference of Predictors.

• Incorporating business knowledge/assumption on expected/modeled behavior

Input: Historical data containing, for several accounts, the Action applied to that account, the resulting Target and 
several other characteristics some of which will be elected as Predictors.

Output: - Scores used to predict the target value for an account given a new Action value.
  - Modeling the Target score in response to Action.
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Action-Effect Model Requirements

What Properties Should an A-E Model Have?

• Control for historical targeting bias:

• Historically, different actions are taken on different segments e.g. risky customers are offered a high 
price

• Need to predict an outcome for all possible actions, not just those actions taken historically

• Should be intuitive:

• Response should be directionally correct w.r.t. action, e.g. higher TU at lower price

• Predictions should rank order across customer segments, e.g. higher TU for riskier customers

• Should be predictive:

• Capture differences across customer segments & ‘validate well’ Out-of-Time (OOT),

• Include ‘Intercept’ or ‘Base Model’ terms

• Should be sensitive:

• Dependent on the action you take, e.g. loan price, amount

• Includes ‘Interaction’ or ‘Cross-Effect’ terms
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What is an Action Effect Model?

• Base Model

• Re-weighting to control for targeting bias

• No variation with action

• Objective: Minimisation of segment-level error between Actual and Predicted target (weighted LSE)

• Decision variables : Base Target scores for each predictor and bin

• Model type: Quadratically constrained, convex

• Action Effect Model

• Final weighted LSE model includes the effect of the action

• Fitted using model assumptions around curve shape and expected response to action (base score)

• Outcome: Given user-defined shape coefficients 𝛼, and decision variables 𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 and 𝑅𝑎𝑛𝑔𝑒, AE scores are:
𝑠 𝑟𝑒𝑐, 𝑣𝑎𝑟, 𝑎 =  𝐼𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡 𝑣𝑎𝑟, 𝑎 +  𝑅𝑎𝑛𝑔𝑒 𝑣𝑎𝑟, 𝑎 𝛼 𝑟𝑒𝑐, 𝑣𝑎𝑟, 𝑎

     for each record 𝑟𝑒𝑐, predictor 𝑣𝑎𝑟 and action 𝑎.

AE scores are combined with Base for the final scores

Modelling options:

• Cross-bin linear constraints on Intercepts and Ranges can be user-defined

• Target scores can be restricted (to limit noise)
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Loan Default Rate Case Study –AE Models OOT Validation
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Loan Default Rate Prediction with AE

• For every account in the portfolio we want to predict probability of loan default (bad rate) 
given the segment the account belongs to given characteristics and the offer (loan amount).

• Bad rate:

• 𝑃 𝑥 𝑗, 𝑝

• 𝑥 -> probability bad ({0,1}), determines the outcome (rate)

• 𝑗 -> segment, defined by account characteristic

• 𝑝 -> action

• The action 𝑝 is the amont offered to the customer

• Segments 𝑗 are defined as low/medium/high risk

• Bad rate 𝑥 will be associated with a loss in loan amount optimization
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Development OOT Overall

Total # Observations 31,602 53,860

Bad Rate 3.20% 4.50%

FICO Model Gini 44.60% 39.0%

Bank Model Gini 50.8%

Model Performance Summary

WalkIn Segment

• Volume of applications in OOT sample is higher compared to the development sample

• Portfolio-level bad rate has increased in the OOT sample, greater increase observed across applications sourced from the 

Cross-Sell segment

• Model Performance: Drop in model performance (Gini) compared to Dev, higher Gini observed for Bank model in OOT.

• Development records for model training. Out-of-Time (OOT) sample for validation and generalization.
• The performance window for the OOT sample overlaps with the COVID period, unlike the development data. 
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• Population Stability Index PSI Analysis – Population distribution is stable in OOT, for all in-
model characteristics and action. However, shift in the population towards higher action bins

• Higher action bins are characterised with higher bad rates. With increased population falling 
in this bin, the bad rate increase is significant (4.7% in Dev to 8.4% in OOT).

• The increase in bad rate translates to an increase in exposure at risk, with ~20% of 
applications being approved higher balance.

Stability Analysis – WalkIn

Loan Amount Development (%) Development Bad Rate OOT (%) OOT Bad Rate (Actual)

<= 125000 12.8% 3.0% 9.0% 2.3%

<= 250000 18.8% 2.6% 14.8% 2.8%

<= 450000 28.5% 2.8% 24.8% 3.3%

<= 1000000 27.6% 3.3% 31.2% 4.2%

<= 10000000 12.3% 4.7% 20.2% 8.4%
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• Historically, high loan amounts have been extended to riskier population (low bureau scores 
and high Day-To-Income (DTI)), with high affordability (high income) 

• In OOT, a similar lending pattern is observed but the risk appetite of the bank has increased. 
Similar loan amounts are being extended to a riskier population, primarily at higher loan 
amount bins:

• Average bureau score reduced from 743 in development to 732 in OOT

• Population in OOT characterised with lower income and very high DTI ( increased from 
62% in dev to 83 % in OOT at high loan amounts) compared to development

Profile Analysis – Development vs. OOT - WalkIn

Action Bins Avg   VERIFIED_INCOME Avg EQU_Score Avg DTI_IN

<= 125000 29177.36 788 0.20

<= 250000 37877.27 774 0.31

<= 450000 42843.92 755 0.44

<= 1000000 129321.15 744 0.60

<= 10000000 111339.94 732 0.83

OOT

Action Bins
Avg   

VERIFIED_INCOME
Avg EQU_Score Avg DTI_IN

<= 125000 39157 777 0.16

<= 250000 35893 765 0.24

<= 450000 46938 751 0.33

<= 1000000 67804 746 0.45

<= 10000000 124461 743 0.62

Development
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• An underprediction is observed in OOT sample for both Bank Model and FICO A-E Model. 

• Greater underprediction at higher loan amounts (where the population is sensitive) is observed for the PD Model compared to 
the A-E Model as it does not take action sensitivity into account.  

• The A-E Model predictions are closer to actual bad rates at higher actions as the model effectively captures sensitivity of risk ier 
population to higher loan amounts.  

• While rank ordering  prevails for both models, the A-E Model predicts the bad rate trend across amount bands more accurately, 
observed from the curvature. 

Actual vs. Predicted - WalkIn
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• Action Effect Modeling is a 2-step approach to predict target response to action and 
predictors built upon 20 years of experience modeling causality probabilities.

• Action-Effect captures action sensitivity to make accurate predictions of how the bad rate 
changes

• Portfolio distribution remains stable between development and OOT. Though, a shift in 
volumes is observed towards higher loan amount bins.

• An increase in bad rate is observed in the OOT data - This is expected because both 
observation and performance period overlap with the COVID period (March 2020) onwards.

• While the A-E Model performance has dropped compared to development, it is able to rank-
order and capture sensitivity across loan amount bands effectively in OOT data

• While the A-E Model’s performance is lower than Bank Model in OOT, it is more efficient at 
capturing action sensitivity. The Bank Model underestimates risk at high loan amounts for the 
WalkIn Segment.

Conclusions
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Thank You!

• FICO Optimization Product page (including DO):

• https://www.fico.com/en/products/fico-xpress-
optimization            

• Success stories on Credit Card Limit Optimization:

• https://www.fico.com/blogs/credit-card-portfolio-
optimization  

• https://www.fico.com/en/newsroom/hsbc-achieves-
15-uplift-monthly-card-spend-using-fico-s-ai-powered-
optimization 

• FICO Community page: 
https://community.fico.com/s/optimization 

https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/products/fico-xpress-optimization
https://www.fico.com/en/newsroom/hsbc-achieves-15-uplift-monthly-card-spend-using-fico-s-ai-powered-optimization
https://www.fico.com/en/newsroom/hsbc-achieves-15-uplift-monthly-card-spend-using-fico-s-ai-powered-optimization
https://www.fico.com/en/newsroom/hsbc-achieves-15-uplift-monthly-card-spend-using-fico-s-ai-powered-optimization
https://www.fico.com/en/newsroom/hsbc-achieves-15-uplift-monthly-card-spend-using-fico-s-ai-powered-optimization
https://www.fico.com/en/newsroom/hsbc-achieves-15-uplift-monthly-card-spend-using-fico-s-ai-powered-optimization
https://community.fico.com/s/optimization
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