

Bridging the gap between theory and practice

Ana Sofia Pereira (Wide Scope)

5th EURO Practtioners' Forum Conference 2024 - Coimbra

Facts & Figures

Wide Scope

FOUNDATION	2003
NUMBER OF EMPLOYEES	50
HQ LOCATION	Lisbon, Portugal
DISTRIBUTOR LOCATIONS	Australia, Turkey, Singapore, UK, France, Cyprus, China, India
FOUNDING PARTNERS	Filipe Carvalho and Ana Sofia Pereira

Products

Meet Routyn

Routyn is a vehicle routing system that automatically plans a fleet's routes, sequencing visits to locations while saving fuel consumptions and driving costs. What has been distinguishing *Routyn* from other similar products is its ability to solve tactical, operational and respond planning optimization problems with its unique advanced algorithms.

WE ARE SPECIALIZED IN REDUCING TRANSPORTATION AND LOGISTICS COSTS

Customers

Routyn implementations

Quick Facts

- There's a 70% chance you get your food from a supermarket in Portugal replenished by trucks following routes designed by Routyn.
- And if you go to a restaurant, hotel or caffé, it goes up to 95%.

Theory

Vehicle Routing Problems

Capacitated vehicle routing problem with time windows

- 2D Matrix of travel times **t**_{i,i}
- Customers have one time window [e_i, I_i]
- Vehicles have a known capacity **Q**_k

양 전 영문 영문	
The decision variables are specified as follows:	
$x_{ijk} = \begin{cases} 1, & \text{if arc } (i,j) \text{ is used by vehicle } k \\ 0, & \text{otherwise} \end{cases}$	
$w_{ik} = \begin{cases} \text{service start time, if customer } i \text{ appears in the route of vel} \\ 0, \text{ otherwise} \end{cases}$	nicle k
(CVRPTW):	
$min \sum_{k \in K} \sum_{(i,j) \in A} c_{ij} x_{ijk}$	(1)
Subject to:	
$\sum_{k \in K} \sum_{j \in \Delta^+(i)} x_{ijk} = 1 \forall i \in V,$	(2)
$\sum_{j\in\Delta^+(0)} x_{0jk} = 1 orall k \in K,$	(3)
$\sum_{i\in \varDelta^-(n+1)} x_{i,n+1,k} = 1 \forall k\in K,$	(4)
$\sum_{i\in \Delta^-(j)} x_{ijk} - \sum_{i\in \Delta^+(k)} x_{jik} = 0 \forall k\in K, j\in V$	(5)
$x_{ijk}(w_{ik}+s_i+t_{ij}-w_{jk}) \leq 0 \forall k \in K, (i,j) \in A,$	(6)
$e_i \sum_{j \in \Delta^+(i)} x_{ijk} \le w_{ik} \forall k \in K, i \in V,$	(7)
$l_i \sum_{j \in \Delta^+(i)} x_{ijk} \geq w_{ik} \forall k \in K, i \in V,$	(8)
$w_{0k} \ge E \forall k \in K,$	(9)
$w_{n+1,k} \leq L \forall k \in K,$	(10)
$\sum_{i \in V} q_i \sum_{j \in \Delta^+(i)} x_{ijk} \le Q \forall k \in K,$	(11)
$x_{ijk} \in \{0,1\} \forall k \in K, (i,j) \in A.$	(12)

Expectation

2D Matrix of travel times $\mathbf{t}_{i,i}$ vary with

- Origin i
- Destination j

REALITY

Travel times vary with

- Origin i
- Destination j
- Vehicle type
- Departing time of the day (15 mins slots)

- Day of week
- Holiday

Expectation

Customers have one time window $[e_i, l_i]$

"Deliver up to 33 pallets between 07:00 and 09:00." "Antecipate up to 12 pallets on the previous day between 22:00 and 23:30, as long as it's a small truck." "Deliver any remaining pallets between 14:00 and 18:00."

REALITY

Expectation

REALITY

Vehicles have a known capacity Q_k

- Trucks support up to 3 different temperature chambers: Frozen, Chilled, Ambient
- Min volume per temperature: 6 pals
- Additions of 3 pals (1 row).

Example: A 33-pals truck cannot carry 1 Frozen + 28 Ambient

Rules

Building a logistics model

ii kesu	ictions Locations Vehicles Capacities Visit Times Geometries	🗶 Ir	nport
	The locations inside geometry (Geometry) , must be visited (before/after)	ID 🔺	Rule
115	locations inside geometry (Geometry) , if they are on the same trip.	8	The vehicle group * cannot visit more than 5 locations in the same trip.
	Example: The locations inside geometry City Center, must be visited before locations inside geometry Suburbian, if they are on the same trip.	18	The locations in geometry <u>RemoteZone</u> should be planned in sets of at least 5 locations.
116	Iong as there are no trips exported for execution. Example: The working time of the vehicles group Extra is limited to 70% as long as there are no trips exported for execution.		
117	The locations group (Locations) must be visited until 10 minutes after being load on vehicles group (Vehicles) Example: The locations group Extra must be visited until 50 minutes after being load on vehicles group Extra. Create		
118	The autonomy for vehicles group ElectricVehicle is 150 kms. Example: The autonomy for vehicles group van is 150 kms. Create		

Infractions

Real-life touch of realism

lame:	Infractions p	profile for User 1			
Descript	ion: Short descri	iption (e.g. Compact Distribution Solver)			
All Re	strictions Infractions	Count Sum Speed Rate	ID	Infraction	
	The locations group	(Locations) can be visited up to	5	The locations group Segment_B can be visited up to 15 min. outside the time window.	Ċ
5	5 🔷 min. o	outside the time window.	5	The locations group Segment_C can be visited up to 30 min. outside the time window.	Ċ
	Example: The locations gro window.	oup After hours guard can be visited up to 60 min. outside the t	ime create 6	10% of the locations group Segment_C may exceed its time windows.	Ċ
	100 🔷 % of t	he locations group (Locations)	ay exceed its 6	5% of the locations group Segment_B may exceed its time windows.	Ċ
6	time windows.		14	The vehicles group Union_Driver can drive up to an additional 10 min.	Ċ
	Example: 90% of the local	tions group After hours guard may exceed its time windows.	create 14	The vehicles group 4Hire can drive up to an additional 120 min.	Ċ
	The total time of all v	visits group (Locations)	time window 15	50% of the vehicles group 4Hire may exceed its total driving time.	Ċ
7	should not surpass	5 🔷 min.			
	Example: The total time of surpass 30 min.	f all visits group After hours guard after the time window should	not create		
	The locations group	(Locations) Can be visited up to			
8	5 🔶 min. b	before the time window.			
	Example: The locations gro window.	oup After hours guard can be visited up to 60 min. before the tir	ne create		
	The vehicles group	(Vehicles) can work up to an add	litional		

Algorithms

Application examples

- Meta-heuristics
 - Domain-specific local search
- Mixed Integer Programming
 - Split and Merge
- Constraint programming
 - Dock Smoothing

Keys to success

Modelling, implementation and adherence

- Data quality
- Change management

"IF I HAD ASKED PEOPLE WHAT THEY WANTED, THEY WOULD HAVE SAID: FASTER HORSES..."

Henry Ford

Use case

ALDI testimony

Electric vehicles

Current work

- Limited number of filling stations in the warehouse for simultaneous loads
- The battery autonomy is not only measured in kms, depends if the cold engine is used or not, if the lifting platform is necessary, if the road has ups and downs, etc.
- Charging batteries for second trips considering only the required energy
- And many more constraints...

Thank you!

+351 211 221 862

ana.pereira@widescope.pt

Avenida da Liberdade, 110 – 1st Floor, 1269-046, Lisbon, Portugal

www.widescope.pt