

Operations research: a connecting bridge

M. Grazia Speranza

EURO 2024, Copenhagen, 30th June-3rd July 2024

Why Operations Research?

Operations research and technology

My papers

Vehicle routing problems

Vehicle routing problems

Decisions

Who?

In which order?

+

When?

How much?

Inventory routing problems

When?

How much?

Vendor managed inventory and a more complex problem

Instances: up to 50 customers, 6 days

Vehicle routing problems: optimal solution

Inventory routing problem: heuristic solution

Savings with the same final inventory levels

Average total cost: 10% (max 20%)

Average number of routes: 12% (max 50%)

Capital C

Assets 1,...,j,...,n

Decision variables x_j

No risk function can be expressed in linear form directly through variables x_j

$$\min \sum_{i=1}^{n} \sum_{j=1}^{n} \sigma_{ij} x_i x_j$$

$$\sum_{j=1}^{n} r_j x_j \ge \mu_0$$

$$\sum_{j=1}^{n} x_j = 1$$

$$x_j \ge 0 \ j = 1,...,n$$

Markowitz's model

Harry Markowitz was the recipient of the 1990
Nobel Prize in Economic Sciences
(with Merton Miller and William Sharpe "for their pioneering work in the theory of financial economics")

A new modelling approach

T scenarios with probabilities p_{t}

Discretization

$$R_j \to r_{jt} \qquad r_j = \sum_{t=1}^T r_{jt} p_t \qquad y_t = \sum_{j=1}^n r_{jt} x_j$$

$$R_{\mathbf{x}} \to \sum_{j=1}^{n} r_{jt} x_{j}$$
 $E[R_{\mathbf{x}}] = \sum_{t=1}^{T} p_{t} y_{t} = \sum_{j=1}^{n} r_{j} x_{j}$

Mean Absolute Deviation

Downside Mean Absolute Deviation

$$\min \frac{1}{T} \sum_{t=1}^{T} d_{t}$$

$$d_{t} + \sum_{j=1}^{n} a_{jt} x_{j} \ge 0 \qquad t = 1,...,T$$

$$\sum_{j=1}^{n} r_{j} x_{j} \ge \mu_{0}$$

$$\sum_{j=1}^{n} x_{j} = 1$$

$$x_{j} \ge 0 \quad j = 1,...,n$$

$$d_{t} \ge 0 \quad t = 1,...,T$$

Downside Mean Absolute Deviation = $\frac{1}{2}$ Mean Absolute Deviation

Fixed transaction costs
Limited number of assets
Transaction lots

The most used objective function is the **sum** or **average** of an individual measure (in a minimization problem, min the average over all 'agents')

The average criterion does not take into account the variability

The alternative is to minimize the **max** value of the individual measure

The **Min max** protects the worst case only

The Conditional Value-at-Risk (CVaR): the average loss, given a confidence level

It is defined for random variables with continuous distribution

$$CVaR(X) = E(X|X \ge VaR_{\alpha}(X))$$

The concept can be adapted to a non-stochastic discrete case:

Minimize the average over a given percentage of the worst 'agents'

30 customers

Min the average distance: Location a is selected

Min the maximum distance: Location c is selected

Minimize the average distance for the 10% worst customers

Location b is selected

In a minimization problem, for any α , the Worst Conditional Average (WCA) is the largest average over a percentage α of 'agents'

$$\min \quad c^{\top}x$$
 $subject to \quad Ax = b$ $x_B \in \mathbb{Z}_+^{|B|}$ $x_N \ge 0$

min
$$\lceil \alpha S \rceil u + \sum_{\ell=1}^{S} v_{\ell}$$
 'agents' subject to $\lceil \alpha S \rceil (u + v_{\ell}) \ge (c^{\ell})^{\top} x$ $\ell = 1, \dots, S$ $Ax = b$ $v_{\ell} \ge 0$ $\ell = 1, \dots, S$ $x_{B} \in \mathbb{Z}_{+}^{|B|}, x_{N} \ge 0$

Min average

Min WCA(α)

Number

of

The value of information and the role of time

Everything is known and all decisions are taken together

Deterministic models

Off-line models

Nothing is known and decisions are taken one at a time

On-line models

Competitive ratio of an on-line algorithm H (minimization problem)

$$R_H = \inf \{r \mid H(I)/O(I) \le r \text{ for all instances I} \}$$
 optimum if all is known in advance

Optimality of an on-line algorithm H

 $R_H \leq R_A$ for any algorithm A

Scheduling on two parallel machines or Partition

On-line problem

Tasks arrive one by one and each task must be immediately assigned to a machine

Input: two machines, tasks

Output: assignment of tasks to machines

Objective: minimization of the makespan

No on-line algorithm can do better than $\frac{3}{2}$

$$R \ge \frac{3}{2}$$

H: assign incoming task to the machine with smallest load

$$R_{H} \le \frac{3}{2}$$
 optimal

The total sum of the tasks is known in advance

$$R_{H2} = \frac{4}{3}$$

A buffer of length k is available to maintain k tasks (k=1 is sufficient)

$$R_{H1} = \frac{4}{3}$$

Semi-online problems

Long paths for some drivers Minimum total travel time User-equilibrium vs System-optimum Selfish behaviour Congestion (Nash equilibrium, no one can switch to a better path)

Price of anarchy

Min total travel time

on paths of limited inconvenience

$$t_{ij}^{FF}[1+0.15(\frac{x_{ij}}{u_{ij}})^4]$$

Travel time on arc (i,j) with flow x_{ij}

Non-linear optimization problem (with an exponential number of paths)

Piecewise linear approximation (heuristic generation of paths)

General solver and ad hoc heuristics

Problem

Ad hoc heuristic

MILP

Solver

Heuristics for classes of problems?

Heuristics that use a solver?

General solver and ad hoc heuristics

Kernel search

General solver and ad hoc heuristics

Multi-dimensional knapsack

Portfolio optimization

Index tracking

Capacitated facility location

Bi-objective enhanced index tracking

Single source facility location

Mixed integer linear program

Thanks

Enrico Angelelli Claudia Archetti Luca Bertazzi Nicola Bianchessi Carlo Filippi Gianfranco Guastaroba Diana Huerta-Muñoz Renata Mansini Andrea Mor Valentina Morandi Lorenzo Peirano

. . .

