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1 Introduction

The Minimum Latency Problem (MLP) [4] [9] [6] [3], also called the Traveling Repairman Problem or the
Deliveryman Problem, is a variant of the Traveling SalesmanProblem (TSP) [5] in which a repairman is
supposed to visit the nodes of a graph in a way to minimize the overall waiting times of the customers
located in the nodes of the graph. The problem was introducedand related to the TSP in 1967, by Conway,
Maxwell and Miller [4], when the MLP was known as a type of scheduling problem. According to Goemans
and Kleinberg [8], despite the obvious similarities to the classical TSP, the MLP appears to be much less
well-behaved from a computational point of view.

We are presenting in this article, another variant of these problems that encompasses with a cost objective
function, both the original TSP and the MLP. We are talking about the Multicommodity Traveling Salesman
Problem (MTSP), where, at each node, a salesman delivers a demanddk ≥ 1 of a commodity that is specific
to each cityk. As in the original TSP, the traveling salesman pays the standard fixed cost to pass in an
arc (i, j), but now he also faces a variable cost for each kind of commodity that needs to be carried across
that arc. Each variable cost is proportional to the quantityof the correspondent commodity, in such a way
that differences in both the unitary arc costs and in the quantities to be delivered imply differences of the
operational costs to serve the customer nodes. In this extended TSP the weight of the salesman’s vehicle is
an important part of the total cost in a road, in a way that should be attended with some priority for customers
with higher quantities and/or higher single transportation costs of the associated commodities. The MTSP
joins on an unique problem the characteristics of the original Traveling Salesman Problem [5] and of a
weighed formulation of the Single Vehicle Delivery Problem(SVDP) [2]. Since the SVDP is an extension of
the classical MLP, the MTSP also encompasses the MLP.

2 The Multicommodity Traveling Salesman Problem

Consider a directed connected graphG(V, E), whereV denotes the set of nodes (cities) andE is a collection
of arcs (roads). Suppose we have an origin nodeo and a set of nodesK, whereK = V − o and, for each
nodek ∈ K, a demanddk of a specific commodityk should be delivered during a traveling salesman’s tour.
Suppose that the traveling salesman pays the standard fixed cost to traverse arc(i, j), but that he also faces a
variable cost for each kind of commodity that needs to be carried across that arc. The objective is to deliver
all the commodity demands by a tour that minimizes the sum of the fixed and variable flow costs.

For this problem we can define a mixed-integer linear programming formulation with the following set of
variables: xij = 1 if the salesman travels across arc(i, j) and 0 otherwise;fijk: flow of commodityk

transported across arc(i, j) with destination to demand nodek. gij is the total aggregate flow through arc
(i, j). The model has a following set of parameters:bij is the fixed cost paid by the salesman to travel in arc
(i, j) andcijk is the unitary flow cost to transfer commodityk across arc(i, j).

The mathematical model is:
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min
∑

(i,j)∈E

(bijxij +
∑

k∈K

cijkfijk) (1)

suject to

−
∑

(o,j)∈E

fojk = −dk ∀k ∈ K (2)

∑

(i,k)∈E

fikk = dk ∀k ∈ K (3)

∑

(i,j)∈E

fijk −
∑

(j,l)∈E

fjlk = 0 ∀k ∈ K, j 6= k (4)

fijk ≤ dkxij ∀(i, j) ∈ E, ∀k ∈ K (5)

fijk ≥ 0 ∀(i, j) ∈ E, ∀k ∈ K (6)
∑

(i,j)∈E

xij = 1 ∀j ∈ V (7)

∑

(i,j)∈E

xij = 1 ∀i ∈ V (8)

xij ∈ {0, 1} ∀(i, j) ∈ E (9)

−
∑

(o,j)∈E

goj = −
∑

k∈K

dk ∀k ∈ K (10)

∑

(i,k)∈E

gik −
∑

(k,j)∈E

gkj = dk ∀k ∈ K (11)

gij ≤
∑

k∈K

dkxij ∀(i, j) ∈ E (12)

gij ≥ 0 ∀(i, j) ∈ E (13)

The objective function (1) sums the costs for all the arcs of the network, with two parts for each arc. A
first part refers to the fixed cost of traveling in the arc. The second part refers to the total flow charges
associated with the transference, across the traveled arc,of all commodities, from the source node to the
specific demand nodes. The separability of the objective function in both the arcs and the commodities is a
clue for our decomposition strategy to solve such a large-scale problem.

We can observe that the constraints (10), (11), (12) and (13)resume information on flows and are the key
to prevent the formation of cycles. With respect to the traditional formulation of Dantzig, Fulkerson and
Johnson [5], that is limited to the space of thexij variables, the inclusion of thegij andfijk flow variables
increases in polynomial form the number of variables of the problem. Instead of working with only one
binary variable for each arc(i, j), the formulation (1)-(13) also operates with| V | continuous variables for
each arc(i, j), but this eliminates the need to include an exponential number of cycle elimination constraints,
as it is the case in the original TSP model [5]. It is convenient to point out that the problem is not symmetrical,
so existing two variablesxij , two variablesgij and two variablesfijk for each connected pair of nodes [10].

3 Benders Decomposition for the MTSP

Benders partitioning method was published in 1962 [1] and was initially developed to solve mixed-integer
programming problems. The computational success of the method to solve large scale multicommodity dis-
tribution system design models has been confirmed since the pioneering article of Geoffrion and Graves [7].
Now we will specialize the method for our model (1)-(13).
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3.1 Problem Manipulation

A Benders partitioning method essentially relies on aprojection problem manipulation, that is then followed
by the solution strategies of dualization, outer linearization and relaxation. From the viewpoint of mathemat-
ical programming we can conceive a projection of our problemonto the space oftopological variablesx, thus
resulting in the following implicit problem to be solved at asuperior level:

min
x∈X

∑

(i,j)∈E

bijxij + t(x) (14)

whereX = [x | for x fixed there is a feasible flowf satisfying (2)-(6)] and wheret(x) is calculated by the
following problem to be solved at an inferior level:

t(x) = min
f≥0

∑

(i,j)∈E

∑

k∈K

cijkfijk suject to (2) − (5) for x fixed. (15)

The flow feasibility requirement related to a topological variable x ∈ X implies that the components for
which xij = 1 composes a ring rooted at the origino and destined to every demand nodek ∈ K. At the
inferior level, the right-hand size of the primal problem (15) is dependent on thex values, but the feasible
solution set of the corresponding dual problem is always thesame for any fixedx. With the use of previously
generated extreme points of this constant dual set, it is possible, at a superior level of each Benders cycle,
to have a better underestimation of the operational cost related to any topologyx. The idea is to choose at
each cycleh a solutionxh that minimizes the sum of the known fixed cost

∑
(i,j)∈E bijxij plus the best

known underestimation of the operational cost related to the topologyxh. The method combines the use of
dualization, outer linearization and relaxation in such a way to approximate the project problem (14). We
will analyze now the subproblem to provide further detail onthe choices made.

3.2 Subproblems

For a fixed cycleCh, associated with the vectorxh, the computation of a minimal cost flowt(xh) can be
separated in a series of trivial network problems. LetP h

ok be the set of arcs in the path, from the source node
to the demand nodek, that has been defined by the master problem of cycleh. We now state in detail the
primal-dual pair to be solved for each commodityk ∈ K.

3.2.1 Primal and Dual subproblems for commodity k when x=xh

min
∑

(ij)∈E

cijkfh
ijk (16)

subject to −
∑

(o,j)∈E

fh
ojk = −dk, ∀k ∈ K (17)

∑

(i,k)∈E

fh
ikk = dk, ∀k ∈ K (18)

∑

(i,j)∈E

fh
ijk −

∑

(j,l)∈E

fh
jlk = 0, ∀k ∈ K, j 6= k (19)

fh
ijk ≤ dkxh

ij , ∀(i, j) ∈ E, ∀k ∈ K (20)

fh
ijk ≥ 0, ∀(i, j) ∈ E, ∀k ∈ K (21)

The trivial and unique solution of the problem is:fh
ijk = 1 if ( i,j) ∈ P h

ok ⊆ Ch andfh
ijk = 0 otherwise.
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The dual problem associated to the subproblem given by the objective function (16) and constraints (17)-(21)
is:

max
ρh,αh≥0

dk(ρh
kk − ρh

ok −
∑

(i,j)∈E

xh
ijα

h
ijk) (22)

subject to ρh
jk − ρh

ik − αh
ijk ≤ cijk, ∀k ∈ K (23)

This dual problem has many feasible solutions in contrast with the primal problem that has an unique trivial
solution. Sincefh

ijk = dk > 0, ∀(i, j) ∈ P h
ok ⊆ Ch we have from the complementary slackness condition

that:ρh
jk − ρh

ik − αh
ijk = cijk, ∀(i, j) ∈ P h

ok ⊂ Ch

in such a way that we can construct, associated with the primal solution xh, the following dual feasible
solution:

ρh
ok = 0, ∀k ∈ K, for the origin o, (24)

ρh
jk = ρh

ik + cijk, ∀(i, j) ∈ P h
ok ⊂ Ch, (25)

αh
ijk = 0, ∀(i, j) ∈ P h

ok ⊂ Ch, (26)

αh
ijk = ρh

jk − ρh
ik − cijk, ∀(i, j) ∈ E − Ch such that ρh

jk − ρh
ik > cijk, (27)

αh
ijk = 0, ∀(i, j) ∈ E − Ch such that ρh

jk − ρh
ik ≤ cijk, (28)

The systematic evaluation of the dual variables with commodity meaningful values is the clue for an efficient
implementation. Here the two series of dual variables can beinterpreted as price information. Each variable
ρh

ik represents the price of the establishment of the communication k(k ∈ K) from the origin nodeo to
nodei(i ∈ V ) in cycle h(h = 1, ...., H). On the other hand, each variableαh

ijk gives for commodityk
the value of an additional unit of capacity at arc(i, j). The dual variableαh

ijk evaluates for commodityk
the maximal reduction in the operational cost that could be gained with the introduction of arc(i, j). In the
case of transportation systems, it can also be understood asa tax to be paid with the use of arc(i, j) in order
to maintain the distribution agents with no positive profit.Remark that the constant dual solution set (23)
represents spacial prices for which ones there is no positive profit for any distribution agent that pays the cost
cijk to flow commodityk through arc(i, j) [10].

3.3 Master Problem

The mathematical model of the master problem is constitutedby the following objective function:

min
x∈X

∑

(i,j)∈E

bijxij + t (29)

subject to the constraints (7)-(13) and by the Benders cut constraint:

t ≥
∑

(i,j)∈E

dk(ph
kk −

∑

(i,j)∈E

αh
ijkxij) h = 1, ..., H (30)

The parameterh is a cycle counter and indicates the number of Benders cuts that must be taken into account.
For givenh andk, the corresponding value in the right-hand-side of constraints(15) provides a lower bound
on the cost of the flow that leaves the origin node to the demandnodek. The variablet that appears in
objective function (29) is the best known lower bound on the total operational cost.
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Table 1: Table of Results

Problem |V | |E| θ LR FC/VC CPLEX CPLEX Benders Benders Benders Cycle 1
gap (%) Time gap Cycles Time gap gap
(%) (s) (%) (s) (%) (%)

P15A 15 28 0.5 27.53 85.302 4.57 0 8 3.22 0 0
P15A2 15 28 0.1 15.46 249.54 4.06 0 7 3.25 0 3.416
P20A 20 43 0.5 31.469 106.271 44.78 0 39 246.80 0 1.7541
P20A2 20 43 0.1 22.144 184.993 28.84 0 29 130.95 0 0
P25A 25 50 0.1 21.048 239.971 110.70 0 12 59.01 0 0
P26A 26 68 0.1 23.829 162.927 8377.03 13.27 74 7357.07 0 0
P28A 28 53 0.1 23.573 245.837 68.70 0 10 30.62 0 2.871
P28B 28 57 0.2 24.607 144.056 340.21 0 74 2088.56 0 0
P28B2 28 57 0.1 21.013 177.939 336.69 0 69 1685.60 0 0
P29A 29 54 0.1 23.388 186.642 266.89 0 42 553.81 0 1.067
P29B2 29 54 0 0 - 2.54 0 1 1.27 0 0
P30A 30 57 0.1 17.497 232.654 96.81 0 12 49.13 0 0
P32A 32 50 0.1 27.792 173.237 95.81 0 13 39.77 0 0
P34A 34 56 0.1 25.278 181.768 190.34 0 9 41.47 0 0.143
P36A 36 62 0.1 29.186 173.416 33.92 0 3 2.32 0 0.812
P36B 36 61 0.1 32.134 124.575 429.29 0 55 1114.74 0 2.894
P38A 38 62 0.1 27.686 171.307 276.91 0 24 208.20 0 0
P40A 40 73 0.1 29.965 151.708 1294.61 0 37 990.24 0 0
P40B 40 70 0.1 31.137 159.656 101.21 0 5 10.81 0 0
P45A 45 84 0.1 36.754 129.092 221.75 0 3 20.25 0 0
P50A 50 92 0.1 35.805 121.206 2739.98 0 21 3468.72 0 2.336
P55A 55 105 0.1 39.538 114.352 2165.05 0 3 44.91 0 0
P55A2 55 105 0.2 54.220 57.176 1787.85 0 3 47.38 0 0
P60A 60 121 0.1 42.211 113.639 7202.45 24.06 7 3529.40 0 5.048
P65A 65 122 0.1 44.732 89.598 3074.04 0 17 565.91 0 0.048

4 Computational results

The tests were executed in a Sun Blade 100 computer that has a UltraSPARC processor of 500 MHz and
1 Gb of RAM memory. The operational system is the Solaris 5.8.The Benders decomposition algorithm
was implemented in C++ using the libraryConcert Technology 1.0 of CPLEXr7.0. In all the experiments
we have solved the problems through two methods: the solver CPLEXrand the algorithm presented in the
previous section, that uses the Benders decomposition method. The CPLEXrwas used with the standard
values for the parameters, except for the total time limit that was modified for 7200 seconds.

The values ofbij related to the distances among the cities were chosen randomly between1601 and3200.
This program generates random demands between1 and130 units∀i ∈ V − o and also generates variable
costs between0.1% andθ% of the fixed cost related to each arc(i, j) and to each productk. The values of
the experiments are shown in the table (1).

The fieldLR gap (%) gives the linear relaxation Gap from formulation (??)-(??). The fieldCycle 1 gap(%)
gives the gap, in porcentage, between the soluton given by the first Benders cycle and the optimal solution.

Table (1) shows that Benders decomposition was faster than CPLEXrin 18 of the 25 cases, mainly in those
where relation (fixed cost/variable cost),FC/VC, is higher. It was verified that in some cases the Benders
method was more than10 times faster than the resolution executed entirely by CPLEXr.

Despite to know that the Benders decomposition method is somewhat efficient, perhaps the most important
experiment of the table (1) is experiment P29B2, where the variable cost is zero and, consequently, the
problem becomes the TSP. Due to the characteristics of the Benders algorithm in the previous section, it is
not surprising that Benders solves the problem in the first cycle, since our algorithm has as result of the first
Benders cycle the value of the TSP. The good surprise is related to theLR gap (%), that is, the solution found
for the CPLEXrfor the relaxed problem (without the constraints of integrality).
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5 Concluding Remarks

We have introduced a new problem that we call the Multicommodity Traveling Salesman Problem. Through
the model (1)-(13) and the Benders decomposition method we have solved instances of up to 65 nodes.
Despite the number 65 does not seems very significant we have to point out that for the Single Vehicle
Delivery Problem (SVDP), Bianco and al. [2] have presented results for 30 nodes, half of the size of the
results presented here for the MTSP. Besides, Benders decomposition was faster than CPLEXrin 18 of
the 25 instances, another example of decomposition strategy to solve mixed integer linear problems with
significant results.

From the solved problems we observed that as much as the instances are closer to the TSP, that is, the parcel
relative to the variable cost is smaller, we can obtain more satisfactory results. This occurs both with the
direct use of the software CPLEXrand also with the use of the solver as part of the Benders decomposition
algorithm. We also evidence that, besides the fact that the two methods are more efficient when the problem
approximates to the TSP, in this case Benders decompositionturns out to be many times faster than the direct
use of the solver CPLEXr. Moreover, the problem becomes easier as much sparse is the graphG = (V, E),
that is, when reduces the number of routing options that the algorithms have to choose. Sparsity is good for
both methods, but again we can obtain a bigger improvement with the Benders decomposition method.
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