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1 Introduction

The Minimum Latency Problem (MLP) [4] [9] [6] [3], also callehe Traveling Repairman Problem or the
Deliveryman Problem, is a variant of the Traveling SalesmResblem (TSP) [5] in which a repairman is
supposed to visit the nodes of a graph in a way to minimize thegadl waiting times of the customers
located in the nodes of the graph. The problem was introdanddelated to the TSP in 1967, by Conway,
Maxwell and Miller [4], when the MLP was known as a type of sghkéng problem. According to Goemans
and Kleinberg [8], despite the obvious similarities to thassical TSP, the MLP appears to be much less
well-behaved from a computational point of view.

We are presenting in this article, another variant of thesélpms that encompasses with a cost objective
function, both the original TSP and the MLP. We are talkingutithe Multicommaodity Traveling Salesman
Problem (MTSP), where, at each node, a salesman deliversandid;, > 1 of a commodity that is specific
to each cityk. As in the original TSP, the traveling salesman pays thedst@hfixed cost to pass in an
arc (i, 7), but now he also faces a variable cost for each kind of comiypditiit needs to be carried across
that arc. Each variable cost is proportional to the quarmtitthe correspondent commodity, in such a way
that differences in both the unitary arc costs and in the tiesito be delivered imply differences of the
operational costs to serve the customer nodes. In this @xteRSP the weight of the salesman’s vehicle is
an important part of the total cost in a road, in a way that khbe attended with some priority for customers
with higher quantities and/or higher single transportatiosts of the associated commodities. The MTSP
joins on an unique problem the characteristics of the oaigiraveling Salesman Problem [5] and of a
weighed formulation of the Single Vehicle Delivery ProblégVDP) [2]. Since the SVDP is an extension of
the classical MLP, the MTSP also encompasses the MLP.

2 TheMulticommodity Traveling Salesman Problem

Consider a directed connected graptl/, E'), whereV denotes the set of nodes (cities) s a collection

of arcs (roads). Suppose we have an origin neded a set of nodek’, whereK = V — o and, for each
nodek € K, a demandl;, of a specific commodity: should be delivered during a traveling salesman’s tour.
Suppose that the traveling salesman pays the standard fiseétbdraverse af¢, j), but that he also faces a
variable cost for each kind of commaodity that needs to beezhacross that arc. The objective is to deliver
all the commodity demands by a tour that minimizes the surhefiked and variable flow costs.

For this problem we can define a mixed-integer linear prognarg formulation with the following set of
variables: z;; = 1 if the salesman travels across di¢j) and0 otherwisef;;;: flow of commodity %
transported across af¢, j) with destination to demand node g;; is the total aggregate flow through arc
(i,7). The model has a following set of parametérs:is the fixed cost paid by the salesman to travel in arc
(i,7) andc;;i, is the unitary flow cost to transfer commodityacross ar¢i, j).

The mathematical model is:
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The objective function (1) sums the costs for all the arcshefretwork, with two parts for each arc. A

first part refers to the fixed cost of traveling in the arc. Tkeond part refers to the total flow charges
associated with the transference, across the traveledfed, commodities, from the source node to the
specific demand nodes. The separability of the objectivetfon in both the arcs and the commodities is a
clue for our decomposition strategy to solve such a largdéegaroblem.

We can observe that the constraints (10), (11), (12) andréis8)me information on flows and are the key
to prevent the formation of cycles. With respect to the tradal formulation of Dantzig, Fulkerson and
Johnson [5], that is limited to the space of thg variables, the inclusion of the; and f;;;, flow variables
increases in polynomial form the number of variables of thebfem. Instead of working with only one
binary variable for each ar@, ), the formulation (1)-(13) also operates wijtli’ | continuous variables for
each ardsi, j), but this eliminates the need to include an exponential rermafbcycle elimination constraints,
as itis the case in the original TSP model [5]. It is convettiepoint out that the problem is not symmetrical,
S0 existing two variables;;, two variablesgy;; and two variableg;;;, for each connected pair of nodes [10].

3 Benders Decomposition for the M TSP

Benders partitioning method was published in 1962 [1] and indially developed to solve mixed-integer
programming problems. The computational success of thaadeb solve large scale multicommodity dis-
tribution system design models has been confirmed sinceidhegring article of Geoffrion and Graves [7].
Now we will specialize the method for our model (1)-(13).



3.1 Problem Manipulation

A Benders partitioning method essentially relies gar@ection problem manipulation, that is then followed
by the solution strategies of dualization, outer lineai@maand relaxation. From the viewpoint of mathemat-
ical programming we can conceive a projection of our probdeno the space dbpological variablese, thus
resulting in the following implicit problem to be solved asaperior level:

min 3 byzy +4() (14
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whereX = [z | for x fixed there is a feasible flofvsatisfying (2)-(6)] and wher¢(z) is calculated by the
following problem to be solved at an inferior level:

mln Z Z cijk fije suject to (2) — (5) for X fixed. (15)
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The flow feasibility requirement related to a topologicatishle z € X implies that the components for
which z;; = 1 composes a ring rooted at the origirand destined to every demand ndde K. At the
inferior level, the right-hand size of the primal problenb)1s dependent on the values, but the feasible
solution set of the corresponding dual problem is always#mee for any fixed:. With the use of previously
generated extreme points of this constant dual set, it isipl@s at a superior level of each Benders cycle,
to have a better underestimation of the operational coate@lto any topology. The idea is to choose at
each cycleh a solutionz” that minimizes the sum of the known fixed CO8Y; jyep bijzij Plus the best
known underestimation of the operational cost related éadipologyz”. The method combines the use of

dualization, outer linearization and relaxation in suchaywo approximate the project problem (14). We
will analyze now the subproblem to provide further detaitlo@ choices made.

3.2 Subproblems

For a fixed cycleC”, associated with the vectaf’, the computation of a minimal cost flo#z") can be
separated in a series of trivial network problems. B&t be the set of arcs in the path, from the source node
to the demand node, that has been defined by the master problem of cyclé/e now state in detail the
primal-dual pair to be solved for each commoditg K.

3.2.1 Primal and Dual subproblemsfor commodity k£ when x=z"
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The trivial and unique solution of the problem i§;, = 1if (i,j) € P, € C" andf}}, = 0 otherwise.

3



The dual problem associated to the subproblem given by tjeetle function (16) and constraints (17)-(21)
is:

hnia“h);o dk pkk - pok Z xzyauk (22)
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This dual problem has many feasible solutions in contratt thie primal problem that has an unique trivial
solution. Sincef}};, = di. > 0,V(i,j) € PJ € C" we have from the complementary slackness condition
that: p}‘k —ph — a?jk = ¢y, (i, j) € Ph c CP

in such a way that we can construct, associated with the psoiation =", the following dual feasible
solution:

pl. = 0, Vke K, for the origin o, (24)
P;'Lk = pl +cijr, V(i,j) € Pl cC, (25)
ol = 0, ¥(i,j) € Pl cCh, (26)
a?jk = p;-lk — p?k — cijk, V(i,j) € E— C" such that p?k — pfk > Cijk, (27)
ally = 0, V(i,§) € E— C" such that py — pls, < ciji, (28)

The systematic evaluation of the dual variables with comityadeaningful values is the clue for an efficient
implementation. Here the two series of dual variables cainteepreted as price information. Each variable
pl. represents the price of the establishment of the commuaicatk € K) from the origin nodev to
nodei(i € V) in cycleh(h = 1,...., H). On the other hand, each variabigk gives for commodityk
the value of an additional unit of capacity at @rg). The dual variabley?jk evaluates for commodity

the maximal reduction in the operational cost that could &ieed with the introduction of ar@, ;). In the
case of transportation systems, it can also be understomtbasto be paid with the use of dicj) in order

to maintain the distribution agents with no positive pr&#mark that the constant dual solution set (23)
represents spacial prices for which ones there is no pesitiefit for any distribution agent that pays the cost
cijx to flow commodityk through aréi, j) [10].

3.3 Master Problem

The mathematical model of the master problem is constitoyettie following objective function:

grgrg)r{l Z bijri; +1 (29)
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subject to the constraints (7)-(13) and by the Benders qugtcaint:
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The parametel is a cycle counter and indicates the number of Benders catsrthst be taken into account.
For givenh andk, the corresponding value in the right-hand-side of coimggél5) provides a lower bound
on the cost of the flow that leaves the origin node to the denmanai k. The variablet that appears in
objective function (29) is the best known lower bound on titaltoperational cost.



Table 1: Table of Results

Problem [V |E]| [ LR FC/VC CPLEX CPLEX Benders Benders Benders Cycle1
gap (%) Time gap Cycles Time gap gap
(%) (s) (%) (s) (%) (%)
P15A 15 28 0.5 27.53 85.302 4.57 0 8 3.22 0 0
P15A2 15 28 0.1 15.46 249.54 4.06 0 7 3.25 0 3.416
P20A 20 43 0.5 31.469 106.271 44.78 0 39 246.80 0 1.7341
P20A2 20 43 0.1 22144  184.993 28.84 0 29 130.95 0 0
P25A 25 50 0.1 21.048 239.971 110.70 0 12 59.01 0 0
P26A 26 68 0.1 23.829 162.927 8377.03 13.27 74 7357.07 0
P28A 28 53 0.1 23,573 245.837 68.70 0 10 30.62 0 2.8Y1
P28B 28 57 0.2 24.607 144.056 340.21 0 74 2088.56 0 q
P28B2 28 57 0.1 21013 177.939 336.69 0 69 1685.60 0 qQ
P29A 29 54 0.1 23.388 186.642 266.89 0 42 553.81 0 1.067
P29B2 29 54 0 0 - 2.54 0 1 1.27 0 0
P30A 30 57 0.1 17.497 232.654 96.81 0 12 49.13 0 0
P32A 32 50 0.1 27.792 173.237 95.81 0 13 39.77 0 0
P34A 34 56 0.1 25.278 181.768 190.34 0 9 41.47 0 0.143
P36A 36 62 0.1 29.186 173.416 33.92 0 3 2.32 0 0.812
P36B 36 61 0.1 32.134 124.575 429.29 0 55 1114.74 0 2.894
P38A 38 62 0.1 27.686 171.307 276.91 0 24 208.20 0 0
P40A 40 73 0.1 29.965 151.708 1294.61 0 37 990.24 0 q
P40B 40 70 0.1 31.137 159.656 101.21 0 5 10.81 0 0
P45A 45 84 0.1 36.754 129.092 221.75 0 3 20.25 0 0
P50A 50 92 0.1 35.805 121.206 2739.98 0 21 3468.72 0 2.336
P55A 55 105 0.1 39.538 114.352  2165.05 0 3 44.91 0 0
P55A2 55 105 0.2 54.220 57.176 1787.85 0 3 47.38 0 0
P60A 60 121 0.1 42.211 113.639 7202.45 24.06 7 3529.40 0 5.048
P65A 65 122 0.1 44.732 89.598 3074.04 0 17 565.91 0 0.048

4 Computational results

The tests were executed in a Sun Blade 100 computer that hitsa®&PARC processor of 500 MHz and
1 Gb of RAM memory. The operational system is the Solaris F8e Benders decomposition algorithm
was implemented in C++ using the libraBpncert Technology 1.0 of CPLEX®?7.0. In all the experiments

we have solved the problems through two methods: the solP&EE®and the algorithm presented in the
previous section, that uses the Benders decompositionoghethhe CPLEX®was used with the standard
values for the parameters, except for the total time lirat thas modified for 7200 seconds.

The values ob;; related to the distances among the cities were chosen rdndetveen1601 and3200.
This program generates random demands betwesrd 130 unitsVi € V — o and also generates variable
costs betweef.1% and0% of the fixed cost related to each &ficj) and to each produdt. The values of
the experiments are shown in the table (1).

The fieldLR gap (%) gives the linear relaxation Gap from formulatid??)-(??). The fieldCycle 1 gap(%)
gives the gap, in porcentage, between the soluton givenedjrit Benders cycle and the optimal solution.

Table (1) shows that Benders decomposition was faster tRAER®Iin 18 of the 25 cases, mainly in those
where relation (fixed cost/variable cosEC/VC, is higher. It was verified that in some cases the Benders
method was more thal times faster than the resolution executed entirely by CRREX

Despite to know that the Benders decomposition method isadrat efficient, perhaps the most important
experiment of the table (1) is experiment P29B2, where th@abke cost is zero and, consequently, the
problem becomes the TSP. Due to the characteristics of thddss algorithm in the previous section, it is
not surprising that Benders solves the problem in the firskegysince our algorithm has as result of the first
Benders cycle the value of the TSP. The good surprise iscktatthel R gap (%), that is, the solution found
for the CPLEX®for the relaxed problem (without the constraints of intdigra



5 Concluding Remarks

We have introduced a new problem that we call the Multicomitydidaveling Salesman Problem. Through
the model (1)-(13) and the Benders decomposition method ave Bolved instances of up to 65 nodes.
Despite the number 65 does not seems very significant we loapeint out that for the Single Vehicle
Delivery Problem (SVDP), Bianco and al. [2] have presengsiits for 30 nodes, half of the size of the
results presented here for the MTSP. Besides, Benders ¢gwsition was faster than CPLEXIn 18 of
the 25 instances, another example of decomposition syrategolve mixed integer linear problems with
significant results.

From the solved problems we observed that as much as thedestare closer to the TSP, that is, the parcel
relative to the variable cost is smaller, we can obtain matisfactory results. This occurs both with the
direct use of the software CPLEXand also with the use of the solver as part of the Benders daasition
algorithm. We also evidence that, besides the fact thattbeariethods are more efficient when the problem
approximates to the TSP, in this case Benders decompotitiosiout to be many times faster than the direct
use of the solver CPLE®). Moreover, the problem becomes easier as much sparse isahie@= (V, E),

that is, when reduces the number of routing options thatltj@rithms have to choose. Sparsity is good for
both methods, but again we can obtain a bigger improvemehttté Benders decomposition method.
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