
GRASP with path-relinking for network migration scheduling

Diogo V. Andrade, Rutgers University, Piscataway, New Jersey, USA
Mauricio G. C. Resende, AT&T Labs Research, Florham Park, New Jersey, USA

Keywords: Network optimization, node migration scheduling, heuristics, GRASP, path-relinking.

1. Introduction

Consider the problem where inter-nodal traffic from an outdated telecommunications network is to be mi-
grated to a new network. Nodes are migrated, one at each time period, from the old to the new network.
All traffic originating or terminating at given node in the old network is moved to a specific node in the new
network. Routing is predetermined on both networks and therefore arc capacities are known. Traffic between
nodes in the same network is routed in that network. Suppose that node yo in the old network is migrated to
node yn in the new network. Let the capacity of arc (xo, yo) be co. Traffic between node xo and node yn must
use a temporary arc (xo, yn) connecting the two nodes with capacity co. When a node is migrated, one or
more temporary arcs may need to be set up since yo may be adjacent to more than one still active node in the
old network. A temporary arc remains active until both nodes connected by the arc are migrated to the new
network. In one version of the network migration scheduling problem, one seeks an ordering of the migration
of the nodes that minimizes the maximum sum of capacities of the temporary arcs. In another version, the
objective is to minimize the sum of the total capacities of the temporary arcs over each period in the planning
horizon.

These scheduling problems can be modeled as variants of the linear arrangement problem. A linear arrange-
ment of a graph G = (V, E), where V is the vertex set with |V | = n and E is the edge set, is a one-to-one
function π : V → {1, 2, . . . , n}. Consider an edge-weighted graph G = (V, E, w), where w is the vector of
real edge weights. For 1 ≤ i < n, let cut Ki between nodes π−1(i) and π−1(i+1) be the sum of the weights
of all arcs with one endpoint in π−1(j) and the other in π−1(k) for all j ≤ i and all k > i. The value Kmax of
the largest cut is the max-cut, i.e., Kmax = max{K1, K2, . . . , Kn−1}. The value Ksum is the cut sum, i.e.,
Ksum =

∑n−1
i=1 Ki. There are two variants of linear arrangement problems. In the first type, the minimum

cut linear arrangement problem, we seek to minimize the maximum cut. One is given an edge-weighted
graph G = (V, E, w) and seeks an arrangement π that minimizes Kmax = max{K1, K2, . . . , Kn−1}, where
Ki =

∑

{u,v}∈E:π(u)≤i≤π(v) wuv . In the second type, the minimum linear arrangement problem, one seeks
to minimize the sum of the cuts. One is given an edge-weighted graph G = (V, E, w) and seeks an arrange-
ment π that minimizes Ksum =

∑n−1
i=1 Ki =

∑

(u,v)∈E |π(u)− π(v)| · wuv .

In this paper, we propose a hybrid heuristic which combines GRASP with path-relinking to find cost-efficient
solutions to the above linear arrangement problems. In Section ?? we describe the hybrid heuristic. Construc-
tion and local search for the GRASP are presented in Sections ?? and ??, respectively. Concluding remarks
are made in Section ??.

2. GRASP with path-relinking

A greedy randomized adaptive search procedure, or GRASP [?, ?, ?], is a metaheuristic for finding approx-
imate solutions to combinatorial optimization problems of the form min{f(x) | x ∈ X}, where f is the
objective function and X is a discrete set of feasible solutions. It can be viewed of as a search method
that applies local search repeatedly from many starting solutions. The starting solutions for local search are
constructed with a randomized greedy procedure.

Path-relinking was originally proposed by Glover [?] as an intensification strategy exploring trajectories
connecting elite solutions. Starting from one or more elite solutions, paths in the solution space leading

toward other elite solutions are generated and explored in the search for better solutions. Figure ?? illustrates
the pseudo-code of the path-relinking procedure applied to a pair of solutions xs (starting solution) and xt

(target solution). The procedure starts by computing the symmetric difference ∆(xs, xt) between the two

procedure Path-relinking(xs,xt)
1 Compute symmetric difference ∆(xs, xt)
2 f∗ ← min{f(xs), f(xt)}
3 x∗ ← argmin{f(xs), f(xt)}
4 x← xs

5 while ∆(x, xt) 6= ∅ do
6 m∗ ← argmin{f(x ⊕m) : m ∈ ∆(x, xt)}
7 ∆(x⊕m∗, xt)← ∆(x, xt) \ {m∗}
8 x← x⊕m∗

9 if f(x) < f∗ then
10 f∗ ← f(x)
11 x∗ ← x

12 end if
13 end while
14 return(x∗);
end Path-relinking;

Figure 1: Path-relinking.

solutions, i.e., the set of moves needed to reach xt (target solution) from xs (initial solution). A path of
solutions is generated linking xs and xt. The best solution x∗ in this path is returned by the algorithm. At
each step, the procedure examines all moves m ∈ ∆(x, xt) from the current solution x and selects the one
which results in the least cost solution, i.e., the one which minimizes f(x⊕m), where x⊕m is the solution
resulting from applying move m to solution x. The best move m∗ is made, producing solution x⊕m∗. The
set of available moves is updated. If necessary, the best solution x∗ is updated. The procedure terminates
when xt is reached, i.e., when ∆(x, xt) = ∅.

Path-relinking is a major enhancement [?] to the basic GRASP procedure, leading to significant improve-
ments in solution time and quality [?, ?, ?, ?, ?]. Two basic strategies are usually adopted. In one, path-
relinking is applied as a local improvement phase to each local optimum obtained after the local search
phase. In the other, path-relinking is periodically applied as an elite-set intensification phase to some or all
pairs of elite solutions. In general, combining local improvement with elite-set intensification results in the
preferred strategy. In the context of local improvement, path-relinking is applied to pairs {x, y} of solutions,
where x is a locally optimal solution produced by each GRASP iteration after local search and y is one of a
few elite solutions randomly chosen from a pool with a limited number Max Elite of elite solutions found
along the search.

The elite set, or pool, is originally empty. Any solution that is best so far is inserted in the pool. To maintain
a pool of good but diverse solutions, each locally optimal solution obtained by local search is considered as
a candidate to be inserted into the pool if it is sufficiently different from every other solution currently in the
pool. If the pool already has Max Elite solutions and the candidate is better than the worst of them, then a
simple strategy is to have the former replace the latter. If the pool is not full, the candidate is simply inserted.

Elite set intensification is done on a series of pools. The initial pool P1 is the elite set P obtained in the
GRASP iterations. The pool counter is initialized k ← 0. At the k-th iteration, pairs of elements in pool Pk

are combined using path-relinking. Each result of path-relinking is tested for membership in pool Pk+1

following the same criteria used during the GRASP iterations. If a new best solution is produced, i.e.,
min{f(x) | x ∈ Pk+1} < min{f(x) | x ∈ Pk}, then k ← k + 1 and a new iteration of elite-set in-
tensification is done. Otherwise, intensification halts with P ← Pk+1 as the resulting elite set.

The pseudo-code in Figure ?? illustrates such a procedure.

2

procedure GRASP-PR(imax)
1 P ← ∅; r← 0;
2 while stopping criteria not satisfied do
3 for i = r + 1, . . . , r + imax do /* GRASP iterations */
4 x← GreedyRandomizedConstruction() ;
5 x← LocalSearch(x);
6 Update the elite set P with x;
7 if |P | > 0 then /* local improvement */
8 Choose, at random, pool solution y ∈ P to relink with x;
9 Determine which (x or y) is initial xs and which is target xt;
10 xp ← PathRelinking(xs, xt);
11 Update the elite set P with xp;
12 end if
13 end for
14 k← 0;
15 do /* elite-set intensification */
16 k← k + 1; Pk ← P ; Pk+1 ← ∅;
17 forsome {x, y} ∈ Pk × Pk do
18 xp ← PathRelinking(x, y);
19 Update the elite set Pk+1 with xp;
20 end forsome
21 P ← Pk+1;
22 until min{f(x), x ∈ Pk+1} ≥ min{f(x), x ∈ Pk};
23 r ← r + 1;
24 end while
25 x∗ ← argmin{f(x), x ∈ P}
26 return(x∗);
end GRASP-PR;

Figure 2: A basic GRASP with path-relinking heuristic for minimization.

3. GRASP construction

We begin by describing the GRASP construction heuristic, a generalization of an idea presented by Petit [?].
Given a initial sequence with k− 1 vertices, we augment the sequence by adding the k-th vertex to a position
where the increase in the objective function is minimized. Our heuristic is a generalization in the sense that it
chooses from any position in the current arrangement, while in Petit’s case, only the head and the tail of the
ordering are considered. The heuristic starts with an initial ordering of the vertices. This ordering is used to
determine which vertex is the next to be inserted in the solution. Petit proposed four different strategies for
this initial ordering: normal, random, breadth-first search and depth-first search. The last two with an option
of being randomized, i.e., pick a random neighbor when performing the BFS or DFS. For our heuristic we
chose randomized depth-first search, since the DFS uses the structure of the input graph to give an ordering
where neighbor vertices are close to each other. This option not only takes advantage of the structure of
the graph, but also provides some randomization to the initial ordering, that will result in a random greedy
heuristic.

We now show how the increase in the cuts is computed when a new vertex is inserted. Let {v1, . . . , vk−1} be
the k − 1 vertices currently in the solution, and K1, . . . , Kk−2 be the current cut values. Let x be the vertex
inserted at position i, the new set of cut values K ′ = {K ′

1, . . . , K
′
k−1} can be computed as follows:

K ′
j =























Kj +

j
∑

a=1

wxva
j = 1, . . . , i− 1

Kj−1 +
k−1
∑

a=j

wxva
j = i, . . . , k − 1.

The above expression results in an algorithm to compute the new cut values. At first sight, such algorithm
would require O(k2) operations to compute all k − 1 cuts for one given position i. However, this can be

3

easily improved to O(k) operations for each position i, by computing the updated cuts in the correct order,
and by storing the value of the corresponding cumulative sums: S− =

∑j

a=1 wxva
, S+ =

∑k−1
a=j wxva

. For
example, to update the cuts positioned before i, i.e., j = 1, . . . , i− 1, it is convenient to start by computing
K1 (j = 1), since it suffices to add S− = wxv1

to the current cut value. To update K2, we update the
cumulative sum S− ← S− + wxv2

, and add it to the current cut value. Notice that by starting from j = 1, in
each step we can update the current cumulative sum in O(1) time, and therefore, recompute each cut value
in O(1). Analogously, for the cuts positioned after i, i.e., j = i, . . . , k − 1, we start by updating the last cut
Kk−1 and proceed decreasing j until we reach the i-th cut.

In principle, the procedure described above would take O(k2) time to compute the best position for x to be
inserted, but this can be further improved using the following proposition.

Proposition 3..1 Let x be the vertex to be inserted, K (i) = {K
(i)
1 , . . . , K

(i)
k−1} be the updated cut values if

x is inserted at position i, and K(i+1) = {K
(i+1)
1 , . . . , K

(i+1)
k−1 } be the updated cut values if x is inserted at

position i + 1. K(i) and K(i+1) are related as follows:

K
(i+1)
j =















K
(i)
j −Kj−1 −

k−1
∑

a=j

wxva
+ Kj +

j
∑

a=1

wxva
if j = i

K
(i)
j otherwise.

Using Proposition ?? we can now find the best position to insert element x in O(k). We start by setting i = 1

and finding the corresponding updated cut values K (1) and cumulative sums (S− =
∑0

a=1 wxva
= 0 and

S+ =
∑k−1

a=1 wxva
) in O(k) time. Now for the next position (i + 1 = 2) it suffices to update the cut value

K
(2)
1 , and the cumulative sums S− and S+. Those steps can all be trivially done in O(1):

S− ← S− + wxv1

K
(2)
1 ← K

(1)
1 −K0 − S+ + K1 + S−

S+ ← S+ − wxv1

i ← i + 1

For simplicity, we assume K0 = 0. Moreover, notice that the order in this update is important, otherwise
wxv1

could be counted twice (if we update S+ before K
(2)
1) or not counted at all (if we update K

(2)
1 before

S−). We repeat this procedure until i = k, and every step (except i = 1) takes O(1) time, so the overall
complexity is O(k).

The randomization provided in the initial ordering combined with the greedy choice of the position to insert
the element gives us the greedy randomized heuristic.

4. Local search

We consider 2-swap neighborhoods used in a local search procedure. The construction procedure, described
in Section ??, outputs an ordering π(1), π(2), . . . , π(n), n − 1 cut values K1, K2, . . . , Kn−1, and for each
v ∈ V , forward weighted degrees f(v) =

∑

u | π(u)>π(v) wvu and backward weighted degrees b(v) =
∑

u | π(u)<π(v) wuv . The 2-swap local search, in its full mode, examines all vertex swaps in the ordering,
searching for an improvement in the objective function. In other words, it determines how the swap affects
the cut values, and if it improves the objective function, then the swap is done. The following proposition
shows how the cuts are affected.

Proposition 4..1 Let x and y be the two nodes to be swapped (x = π−1(i), y = π−1(j), i < j), and
f(x), b(x) (resp. f(y), b(y)) be the forward and backward weighted degrees of x (resp. y) before the swap.
Then, we have the following:

4

(i) Only the cuts Ki, . . . , Kj−1 will be affected.

(ii) Let ei+1, . . . , ej be the nodes between x and y. The variation of the cut value ∆K(i + a) (a =
0, . . . , j − i− 1) is given by the following expression:

∆K(i + a) = b(x)− f(x) + f(y)− b(y) + 2wxy +

2
∑i+a

k=i+1 wxek
+ 2

∑j−1
k=i+a+1 wyek

.

Using the expression given in Proposition ??, we can now estimate the execution time of recomputing the cut
values given a swap (x, y) in terms of the distance between x and y in the permutation array. Let k = j−i+1.
It takes O(k) to compute each new cut value, and therefore O(k2) to determine if the swap improves the
solution value. Such execution time can be considerably improved by realizing that ∆K(i + a + 1) can be
calculated as a function of ∆K(i + a). From Proposition ?? we can derive the relation

∆K(i + a + 1) = ∆K(i + a) + 2wxei+a+1
− 2wyei+a+1

.

Therefore, we can first compute ∆K(i) in O(k) time, and then compute the each of the remaining cuts in
O(1) time, taking only O(k) time to compute all new cut values. This procedure is illustrated in the pseudo-
code in Figure ??.

procedure test-swap(i, j, π,π−1,w,K)
1 x← π−1(i);
2 y← π−1(j);
3 K′ ← K;
4 ∆K(i) = b(x)− f(x)− b(y) + f(y) + 2wxy + 2

Pj−1
k=i+1 wyπ−1(k);

5 K′(i)← K(i) + ∆K(i);
6 for k = i + 1, . . . , j − 1 do
7 ∆K(k) = ∆K(k − 1) + 2wxπ−1(k) − 2wyπ−1(k);
8 K′(k)← K(k) + ∆K(k));
9 end for
10 return obj-func(K ′);
end test-swap;

Figure 3: test-swap procedure for the local search.

Once the swap (x, y) is done, we must recompute the weighted forward and backward degrees (f(k) and
b(k)). Notice that we only need to recompute the indices k such that i ≤ k ≤ j. The update goes as follows:

f(x) ← f(x)− wxy −
∑j−1

k=i+1 wxπ−1(k)

b(x) ← b(x) + wxy +
∑j−1

k=i+1 wxπ−1(k)

f(y) ← f(y) + wxy +
∑j−1

k=i+1 wyπ−1(k)

b(y) ← b(y)− wxy −
∑j−1

k=i+1 wyπ−1(k)

f(π−1(k)) ← f(π−1(k)) + wxπ−1(k) − wyπ−1(k)

b(π−1(k)) ← f(π−1(k))− wxπ−1(k) + wyπ−1(k)

Figure ?? shows the pseudo-code for the local search procedure. The test-swap procedure is illustrated
in Figure ??. The procedure update-vars is not explicitly illustrated but is simple to implement from
the formulas given above (that shows how to update f and b), and from the procedure test-swap (for the
cuts).

5

procedure local-search(π,π−1,w,K,K∗,nK∗)
1 improved← true;
2 while improved = true do
3 improved← false;
4 for all pairs (i, j) : 1 ≤ i ≤ nK∗ < j ≤ n do
5 K′ ←test-swap(i, j, π, π−1, w,K);
6 if K′ < K∗ then
7 update-vars(i, j, π, π−1, f, b,K,K∗, nK∗);
8 improved← true;
9 end if;
10 end for;
11 end while;
12 return(π, K∗);
end localsearch;

Figure 4: local-search procedure for MCLA problem.

5. Concluding remarks

The heuristic presented in this extended abstract has been extensively tested on real and artificial test prob-
lems. In the extended version of this paper, we will present the computational experiments.

References
[1] R.M. Aiex, M.G.C. Resende, P.M. Pardalos, and G. Toraldo. GRASP with path relinking for three-index

assignment. INFORMS J. on Computing, 17:224–247, 2005.

[2] S.A. Canuto, M.G.C. Resende, and C.C. Ribeiro. Local search with perturbations for the prize-collecting
Steiner tree problem in graphs. Networks, 38:50–58, 2001.

[3] T.A. Feo and M.G.C. Resende. A probabilistic heuristic for a computationally difficult set covering
problem. Operations Research Letters, 8:67–71, 1989.

[4] T.A. Feo and M.G.C. Resende. Greedy randomized adaptive search procedures. Journal of Global
Optimization, 6:109–133, 1995.

[5] F. Glover. Tabu search and adaptive memory programing – Advances, applications and challenges. In
R.S. Barr, R.V. Helgason, and J.L. Kennington, editors, Interfaces in Computer Science and Operations
Research, pages 1–75. Kluwer, 1996.

[6] M. Laguna and R. Martı́. GRASP and path relinking for 2-layer straight line crossing minimization.
INFORMS Journal on Computing, 11:44–52, 1999.

[7] J. Petit. Experiments on the minimum linear arrangement problem, 2001.

[8] M.G.C. Resende and C.C. Ribeiro. Greedy randomized adaptive search procedures. In F. Glover and
G. Kochenberger, editors, Handbook of Metaheuristics, pages 219–249. Kluwer Academic Publishers,
2003.

[9] M.G.C. Resende and C.C. Ribeiro. GRASP with path-relinking: Recent advances and applications. In
T. Ibaraki, K. Nonobe, and M. Yagiura, editors, Metaheuristics: Progress as real problem solvers, pages
29–63. Springer Science+Business Media, 2005.

[10] M.G.C. Resende and R.F. Werneck. A hybrid heuristic for the p-median problem. Journal of Heuristics,
10:59–88, 2004.

6

