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1 Introduction
Consider the following problem: given a Telecommunication network with a set of point-to-point traffic
demands, an installation of network capacity is sought that minimizes the total network cost while routing
all demands on single paths [4]. Moreover, the volume of each traffic demand is constant during most of
the network operations, but is subject to rare peaks which are assumed non-simultaneous. Today’s Multi-
Protocol Label Switching (MPLS) networks are an application of this network model as MPLS nodes exploit
the statistical multiplexing property, where demands that have sudden variations in the volume requested can
be accommodated in the network capacity [3]. This key feature allows us to save large amounts of network
capacity by “aggregating” traffic flow and thus sharing resources allocated to different traffic demands.

More specifically, the data exchanged between two MPLS nodes consists in the nominal amount of traffic
for all demands plus, possibly, a peak of one of the demands. Multiplexed data transmitted by an MPLS
node can only be de-multiplexed by another MPLS node. Hence, although a network does not need to have
MPLS nodes only, an MPLS path accommodating a set of traffic demands must have two MPLS nodes as its
endnodes. As MPLS nodes are quite expensive, one has to find the optimal tradeoff between the additional
cost of MPLS nodes and the savings in the link bandwidth allocation due to the statistical multiplexing effect.
If link capacities can be selected according to a small discrete set of values, MPLS traffic aggregation can
also improve capacity utilization further improving cost savings (grooming effect).

In Section 2 we describe a traffic model for MPLS networks, and provide a path-based, Mixed Integer Linear
Programming (MILP) formulation for the problem of designing a two-layer MPLS network where the total
cost depends on the number of MPLS nodes and the link capacities. We apply Lagrangian Relaxation and
the Subgradient method to obtain a lower bound of the network cost. As the number of path variables used
to model the routing grows exponentially with the graph size, we use an initially limited number of variables
and a column generation approach. We have also devised a heuristic approach, outlined in Section 4, to get a
good feasible solution. Computational results are reported in Section 5 for real-world instances.

2 A model for network design with statistical multiplexing
We do not provide here, for reasons of space, a detailed description of the traffic model underlying our
method. The interested reader can refer to [1]. We have adopted a traffic model where each demand q is
described by an average rate f ′q and an additional rate f ′′q : throughout network operations, the rate of demand
q is f ′q , and it occasionally bursts at f ′q + f ′′q . Considering a set of demands {(f ′1, f ′′1 ), (f ′2, f

′′
2 ) . . . , (f ′r, f

′′
r )}

routed on a link of the network, statistical multiplexing affects the capacity required by the aggregated flow.
If no MPLS node was installed, none of the flows would be aggregated on a link, therefore the amount of the
capacity to be installed would be:

r∑
q=1

(f ′q + f ′′q ). (1)

On the other hand, if the flows are aggregated on a single link, we can take advantage of statistical multiplex-
ing and the capacity requirement on the link decreases. Only one demand is assumed to take on its highest
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value f ′q + f ′′q . Therefore, the capacity needed on a link is:

r∑
q=1

f ′q + max
q=1..r

f ′′q . (2)

As we point out above, the aggregation of traffic flows onto network arcs, as given in (2), is performed by
MPLS nodes, and the inverse process, i.e. decompression, also needs a MPLS node. However, aggregated
flows can be routed through non-MPLS nodes, which maintain the encapsulation and forward the aggregated
traffic to other nodes. As a result, some traffic is routed without taking advantage of statistical multiplexing,
and some is compressed and routed between MPLS nodes in order to share capacity resources. How can we
model both forms of traffic to be routed on the same network? By introducing a paradigm that is specifically
designed to separate distinct routing protocols in a network, i.e., a multi-layer model: a network is seen as
a superposition of two identical networks that work with different protocols and where the corresponding
nodes are coupled to provide a flexible way of switching data between the two layers[5].

In our case, one layer routes the non-aggregated traffic and allocates capacity on edges according to (1), while
a second layer accommodates the capacity for aggregated traffic according to (2). However, in the latter –
which we call the MPLS layer – traffic demands are only routed between MPLS nodes, which only constitute
a subset of the network nodes. Therefore, further notation is needed to describe this limit in the routing
of aggregated traffic: we define a set of subpaths between every node pair and require that traffic can only
be aggregated if sent through subpaths defined between pairs of MPLS nodes. A subpath s(i, j) or simply
s (subpaths are also called logical links or hops in the Telecommunication literature) between two MPLS
nodes i and j carries an aggregated flow B through edges of the network, thus it must be allocated B units of
capacity on all edges contained in s. Let us denote with S the set of all subpaths.

The network is represented as an undirected graph G = (V, E), where V is the set of nodes and E is the set
of edges. Given a set Q of traffic demands, each traffic demand q ∈ Q is defined by an origin sq , a destination
tq (with sq, tq ∈ V ), a mean flow f ′q (in Mbit/s) and an additional one f ′′q (in Mbit/s). Let us also denote with
F the maximum f ′′q , i.e. F = maxq∈Q f ′′q . We consider an augmented set of edges, where both edges of E
and subpaths are comprised. Let us denote P as the set of all the paths between pairs of nodes of V which
may also contain subpaths. Given a traffic demand q, Pq denotes the set of paths connecting sq and tq . Each
origin-destination path is composed by a sequence of hops. For each node v ∈ V , I(v) and F (v) are the sets
of hops that start and end in v, respectively. Similarly, we denote with I(v) and F (v) the sets of arcs incident
in v. An MPLS node is assumed to have a fixed cost θ, while each unit of capacity installed on edge e has a
cost of ce. The cost of a subpath s is given by the cost of all edges contained in s, i.e., cs =

∑
e∈s ce. Finally,

let us define a per-channel capacity λ and an upper bound ψ >> 0 on the number of subpaths that origin or
end in i.

We define a binary variable xp for each path p ∈ P connecting node sq to tq , which is 1 if traffic demand
q is routed on path p, and zero otherwise. For each v ∈ V , a binary variable mv tells us whether v is an
MPLS node, and an integer variable ye corresponds to the total capacity installed on edge e. For each s ∈ S,
variables zs represent the maximum peak rate among the demands routed on s. Using the variables described
above, the model of the problem can be formulated as follows:

min θ
∑

v∈V

mv +
∑

e∈E

ceye +
∑

s∈S

csys (3)

∑

p∈Pq

xp ≥ 1 ∀q ∈ Q (4)

∑

s∈S∩(I(v)∪F (v))

ys ≤ ψmv ∀v ∈ V (5)
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∑

q∈Q

∑

p∈Pq:s∈p

f ′qxp + zs ≤ λys ∀s ∈ S (6)

∑

q∈Q

∑

p∈Pq :e∈p

(f ′q + f ′′q )xp ≤ λye ∀e ∈ E (7)

f ′′q
∑

p∈Pq :s∈p

xp ≤ zs ∀q ∈ Q,∀s ∈ S (8)

xp,mi ∈ {0, 1}, ys, ye ∈ Z+, zs ≥ 0 (9)

The objective function (3) is the sum of edge- and subpath capacity costs and node installation costs. Con-
straint (4) imposes that each traffic demand is routed on exactly one path. Constraints (5) guarantee that
i is an MPLS if at least one subpath originating or ending in i is used. Constraints (6) and (7) define the
relationship between routing path xp and the capacity to be installed on all edges and subpaths. For the latter,
the capacity is given by the sum of the mean values of the flows routed on it and the maximum of the peak
rates, which is defined by constraint (8). Constraints (9) specify the type of all variables included.

Two remarks are due here. First, the model can be completed with multifacility features both on nodes and
edges. This extension is particularly important in the case of practical applications but does not change
the main aspects of the problem. We omit this part of the model for the sake of readability, and to better
focus on the relevant point of this problem, i.e., statistical multiplexing. Second, the formulation above
has a potentially huge number of variables, as the cardinality of the sets S and P of subpaths and paths is
exponential in the number of nodes of G. Therefore, for practical purposes we instead consider initially
limited sets S0 and P0 and apply column generation in order to include those variables x, y, and z with
negative reduced cost.

3 Computing a lower bound through Lagrangian Relaxation
We apply Lagrangian Relaxation to constraints (6), (7), and (8). Model (3) - (9) is thus decomposed into
|Q|+1 subproblems which are easier to solve and which give us a lower bound to the optimal solution to our
problem.

Let us denote as πs, σe, and ρq
s the Lagrangian multipliers associated with the relaxed constraints. The

objective function of the Lagrangian dual is:

L(π, σ, ρ) = L0(π,σ, ρ) +
∑

q∈Q

Lq(π,σ, ρ). (10)

The first sub-problem minimizes the following objective function:

L0(π, σ, ρ) = min
∑

e∈E

(ce − λσe)ye +
∑

s∈S

(cs − λπs)ys + θ
∑

i∈V

mi +
∑

s∈S

(πs −
∑

q∈Q

σq
s)zs (11)

subject to constraints (5) only. In this sub-problem, the z variables are not related with the y’s or the m’s,
hence they can be set to zero or to their maximum value F depending on their coefficient πs −

∑
q∈Q σq

s .
Due to constraint (5), the problem needs to be solved by a Linear Programming (LP) solver.

Each sub-problem Lq(π,σ, ρ), q ∈ Q, has the following form:

Lq(π,σ, ρ) = min
∑

s∈S

∑

p∈Pq :s∈p

(πsf
′
q + ρq

sf
′′
q )xp +

∑

e∈E

σe

∑

p∈Pq:e∈p

(f ′q + f ′′q )xp (12)

subject to constraint (4) and to 0 ≤ xp ≤ 1. These |Q| sub-problems are shortest path problems on an
oriented graph where the set of the arcs is the set S ∪E and each arc is assigned a cost given by σe(f ′q + f ′′q )
for all e ∈ E and (πsf

′
q + ρq

sf
′′
q ) for all s ∈ S. Solving each of the |Q| sub-problems with any shortest-path

algorithm will give an integer solution even though integrality of x variables is not explicitly imposed.
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4 A heuristic upper bounding procedure
To find a good feasible solution, we propose a heuristic algorithm based on a local search framework. The
local search is applied to two initial solutions, leading to two versions of the algorithm. The first initial
solution is obtained from the routing provided by the |Q| shortest path problems at each subgradient iteration.
According to such routing, resources are allocated on nodes and links. The local search is then applied to
the set of K best feasible solutions obtained from such procedure. The second procedure builds the initial
solution with a greedy algorithm that routes each commodity on the path with the minimum number of hops.
Only those hops are considered that cross at most two links of the lower layer. Obviously, the set of potential
LSPs available for the local search is different depending on the chosen initial solution.

Our local search is based on two neighborhoods. The local search alternately visits the two neighborhoods,
swapping from one to the other when a local minimum is reached. Two key features of the problem solution
are the routing of each traffic demand and the routing of each hop on the lower layer network. The two
neighborhoods are generated by modifying such features of a given solution.

The first neighborhood is generated by routing each traffic demand on all possible LSPs connecting its source
to its destination. As the number of possible LSPs connecting the origin and the destination node of a
given traffic demand is huge, visiting the whole neighborhood would be expensive from a computational
viewpoint. Therefore, we propose a heuristic way to visit such neighborhood based on the approach proposed
in [2]. Instead of enumerating all possible alternative routing, we look for the routing providing the best
improvement of the objective function and search heuristically for such routing, exploiting an auxiliary graph,
built for each traffic demand. In the auxiliary graph, a cost is associated with each arc and represents the
incremental cost, positive (or negative), of routing (removing) the considered traffic demand on (from) the
arc itself. An improving move is then associated with a negative cost cycle. Thus looking for the best
neighborhood turns out to be a minimum negative cost cycle problem, which is an NP-hard problem that
can be solved heuristically as proposed in [2]. However, due to the technological feature of the problem,
computing the auxiliary graph cost is computationally expensive as it requires to evaluate the link capacity to
add or remove at the lower layer and the node capacity to add or remove at both layers.

The second neighborhood is built by changing the routing of all the traffic flows routed on the considered
hop. The dimension of the second neighborhood is huge as well, thus we use a heuristic approach to find
the best move. We generate an auxiliary graph with incremental arc costs using the same criteria adopted to
explore the first neighborhood. Then we delete the only arc with a negative incremental cost (that represents
the considered hop) and search the shortest path to connect the endpoints of the considered hop. If the length
of this path is less than the cost of the deleted arc, considering the absolute value, a potentially improving
solution is found.

5 Computational results
We have implemented our algorithms with MATLAB 7.0 and run them on an a workstation with a 1.8 Ghz
processor and 1 Gbyte of RAM.

We have tested the formulation on real-world instances provided by ALCATEL Italia, with 25 (A instances)
and 39 nodes (B instances) and 63 and 86 links, respectively. Two traffic demands, with 270 (60 of which
have null f ′′) and 300 commodities, (40 with null f ′′) are given. We have solved different instances obtained
by considering different ratios between mean and additional values: low peak instances, in which the ratio
between peak and mean rate is [0.1-0.2], medium peak instances, in which the ratio is between [0.3-0.4] and
high peak instances, with ratio ranging in [0.5-0.6]. In these three cases, for each traffic demand, the sum of
mean and peak rates is the same.

To evaluate the effect of MPLS node costs, we have considered also two networks with 35 nodes (C and D
instances) and one with 45 (E instances). These three instances have respectively 63, 106 and 102 edges, and
two traffic matrices with 340 commodities (40 of which have null f ′′) and 575 commodities (75 with null
f ′′). We have considered three nodes costs: one with the overall nodes cost equal to the overall edge cost
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Network Peak rate LB LH LSLH Gap Gain
106 (e) 106 (e) 106 (e) LSLH−LB

LB
LH−LSLH

LH
low 12.979 20.244 18.587 43.2% 8.2%

A medium 12.125 19.110 17.542 44.7% 8.2%
high 11.334 18.120 16.489 45.5% 9.0%
low 4.247 6.960 6.103 43.7% 12.3%

B medium 3.681 6.444 5.528 50.2% 14.2%
high 3.480 6.184 5.094 46.4% 17.6%

Table 1: Results on instances with different values of the ratio between mean and peak rates. Instances A and
B have 25 and 39 nodes and 63 and 86 edges, respectively.

Network Nodes cost Local search from LH Local search from greedy LSG−LSLH
LSLH

(respect to the LSLH time LSG time
links cost) (minutes) (minutes)
cheap 6.769 197 7.248 13 7.1%

C equal 14.000 213 14.211 10 1.5%
expensive 622.439 269 678.147 15 9.0%
cheap 5.478 362 5.715 15 4.3%

D equal 12.334 524 12.682 14 2.8%
expensive 635.901 841 691.454 17 8.7%
cheap 8.117 1056 8.817 33 8.6%

E equal 18.707 1855 18.944 36 1.3%
expensive 948.010 1812 1021.900 38 7.8%

Table 2: Results on instances with different node costs. Instances C, D, and E have 35, 35, and 45 nodes and
63, 106, and 102 edges, respectively.

Network Nodes cost after LB after Local search from LB
(respect to the used / capacity used / capacity
links cost) potential (Mbit/s) potential (Mbit/s)
cheap 15 / 15 227.810 13 / 15 242.269

C equal 13 / 15 91.123 9 / 15 111.649
expensive 6 / 15 39.497 2 / 15 4.976
cheap 11 / 15 74.640 9 / 15 92.523

D equal 6 / 15 11.195 5 / 15 44.007
expensive 7 / 15 17.261 2 / 15 7.153
cheap 18 / 20 440.998 18 / 20 475.830

E equal 16 / 20 194.686 13 / 20 242.891
expensive 12 / 20 30.478 2 / 20 5.287

Table 3: Use of MPLS core nodes on instances with different node costs. Instances C, D, and E have 35, 35,
and 45 nodes and 63, 106, and 102 edges, respectively.

(referred to as equal in the tables below), one with the first 100 times greater than the second (expensive) and
finally one with the first 100 times smaller than the second (cheap).

Table 1 reports results for instances A and B (first column) for different values of the ratio between mean
and peak rate (second column): in the third column the objective function value (LB) of the Lagrangian
relaxation, in the fourth column and in the fifth one both the initial solution (LH) and the final solution
(LSLH ) of the local search respectively , in the sixth column and in the seventh one the gap between upper and
lower bound (LSLH−LB

LB ) and the gain obtained on the starting solution by using the local search (LSLH−LH
LH ).

We observe that the gap between upper and lower bound is high (45% on average), owing to the use of
Lagrangian Relaxation solved by a continuous relaxation. The mean time to obtain these values (LB, ISLB

and FSLB) was 562 minutes. Most of this time (84%) is spent for the local search since building the auxiliary
graphs is computationally complex. Both neighborhoods require to create a new auxiliary graph each time a
commodity q or an hop of a LSP s is considered. However, the gains obtained with the local search, shown
in the seventh column (mean value 11%), prove that this phase of the algorithm is quite effective.
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Table 2 is devoted to the results of the instances with different node cost. For each of the three instances (first
column) and the three cost settings (second column) Table 2 reports: in the third and fourth column the local
search solution (LSLH ) obtained starting from the lower bound and the time needed to obtain it, respectively,
in the seventh and eighth columns the local search solution (LSG) obtained starting from the greedy solution
and the time needed to obtain it, and finally in the last column the gap between LSG and LSLH . Table 3
reports the number of MPLS nodes in the different solutions. For each of the three instances (first column)
and the three cost settings (second column) Table 2 gives: in the third and fourth column the number of MPLS
core nodes installed and their total capacity in the lower bound solution, in the last two columns the number
of MPLS core nodes installed and their total capacity in the final heuristic solution.

We observe that, as expected, the number of core nodes equipped with multiplexing devices decreases as
the node cost increases. The main reason of such behavior is that the bandwidth saving achieved with the
statistical multiplexing and traffic grooming is balanced by the node cost. However, even when the nodes cost
is high the solution includes a few MPLS nodes. This is not due to the bandwidth saving we achieve on the
links, since links cost is negligible with respect to nodes cost. Whereas, the reason is that MPLS nodes allow
to reduce the total amount of traffic into the transport nodes that can be equipped with a cheaper technology.
In the opposite scenario where MPLS nodes are very cheap not all nodes are installed. This is due to the effect
of statistical multiplexing on MPLS flows routing that favors route aggregation. As a result, some nodes are
not crossed by MPLS traffic and do not need MPLS support.

The time needed to compute the upper and the lower bound increases when the network size increases. The
mean time in the case of the network with 35 nodes and 63 links is equal to 226 minutes, 575 minutes in the
case of the network with 35 nodes and 106 links, and 1574 minutes for the network with 45 nodes.

The network cost we achieved with the local search starting from the feasible solution derived with the greedy
algorithm is quite good. On average it is 5.7% worse than LSLH , with a maximum of 9% and a minimum
of 1.3%. The mean time needed to get this results is only 21 minutes therefore the greedy algorithm seems
to be the best way to find a good solution in a short time. However, we have to point out that the greedy
algorithm is based on a min-hop routing. If the obtained routing corresponds to a non feasible solution, this
method cannot proceed. The solution is not feasible when a node is not able to manage all the flows crossing
it due to capacity constraints. On the contrary, the algorithm that obtains the starting feasible solution of the
local search from the lower bound is more robust since the subgradient method used to solve the Lagrangian
relaxation drives the algorithm towards feasible solutions.
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