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Predicting the future of Optimization

I Boris Polyak (1983): ”It seems that the period of highest activity in
Optimization is over.”

I 1984: Interior-Point Methods

I 2003: Renaissance of Fast Gradient Methods

I Starting from 2010: Big Data revolution.

Observations:

I Traditional methods are not efficient in Huge Dimension

I We need to learn the way Optimization is incorporated in Nature.
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Hints from the Wizards

Leonard Euler (1744):

”Nothing in the world takes place without optimization, and there is no
doubt that all aspects of the world that have a rational basis can be
explained by optimization methods”.

Adam Smith (1776): Invisible hand of the market.

Plutarch/.../Erasmus(1500): ”God’s mill grinds slow but sure”.

Our guesses:

1. Optimization algorithms are deeply involved in Nature/Social Life.

2. Very often, they are implemented as unintentional/subconscious
actions.

3. Their rate of convergence is slow. However, they have reasonable
worst-case performance guarantees.
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Example I: Flood Dynamics

Theorem: Every point is reached in minimal time.

Other examples: light, waves, viruses, rumors, etc.

Algorithm: Shortest paths in the networks (Dijkstra, 1956).

NB: Continuous time ⇒ Discrete time ⇒ Polynomial complexity.
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Example II: Superwised Growth

Model situation: Design of construction resisting to a load.

I We have a set elements of “thicknesses” xi , i = 1, . . . , n.

I The elements “interact” at “nodes”, unifying the set of ”neighbors”
σj ⊆ {1, . . . , n}, j = 1, . . . ,m.

Constraint: The “tensions” at nodes are below certain limits.

Algorithm: 1) Start from the zero load.

2) If all tensions are acceptable, increase the load.

3) Otherwise, enforce the neighbors at problematic nodes.

Interpretation: Switching subgradient method for solving the problem

max
x∈X
{〈f , x〉 : fj(x) ≤ 0, j = 1, . . . ,m}.

Complexity: O( 1
ε2 ) iterations.

NB: 1) Many naturally growing systems have hidden optimality.

2) They are created by unintentional optimization.
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Algorithm: 1) Start from the zero load.
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Example III: Intuitive reaction

Model situation:

I Our current “position” is suddenly changed by a small random
perturbation.

I If we feel ourselves better, we do a big step in the same direction.

I If not, we do the big step in the opposite direction.

NB: Looks a bit unbalanced.

Interpretation: Random search for solving the min
x∈Rn

f (x):

I Generate a Gaussian direction uk ∈ Rn.

I Update our position: xk+1 = xk − hk
f (xk+µuk )−f (xk )

µ uk .

NB: µ is very small, hk ≈ 1√
k

.

Complexity: O( n
ε2 ) iterations.

Examples: Nature, Social life, etc.
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Conclusion

... Many things to do ...

Thank you for your attention!
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