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In the Beginning…

…worked under the mentorship of Jean-Claude Picard (1938-1999) on 
minimum (s,t)-cuts in networks – learning from some earlier giants:
• Maxflow Mincut Theorem [P. Elias, A. Feinstein, & C.E. Shannon, 

1956; L.R. Ford, Jr. & D.R. Fulkerson, 1956]
• Minimum (s,t)-cuts as instances of pseudo-Boolean programming 

[P.L.Hammer (Ivanescu), 1965]
• Binary maximization of quadratic polynomials with nonnegative 

quadratic coefficients as minimum (s,t)-cuts problems [J.-C. Picard & 
H.D. Ratliff, 1975]

• Maximum weight closure of a graph (poset ideal or filter) as a 
minimum (s,t)-cut problem, and application to open pit mining 
[J.-C. Picard, 1976]
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Minimum (s,t) cuts
In a directed graph G = (V, A) with
• a source sand a sink t in V  (s ≠ t) and 

• arc capacities uij > 0 for all ij∈ A
an (s,t)-cut (S, V \ S) is the set of all arcs ij∈A
with i∈Sand j∉S , with source set S⊂ V 
containing sand not t
• its capacity is  u(S, V \ S) =∑ij∈(S, V \ S) uij
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(S, V \ S)

u(S, V \ S) = 50
another s-tcut, capacity 47 and another one, 

capacity 40

[P.L.Hammer (Ivanescu), 1965]: let binary variable xi = 1 if i∈S, and 0 otherwise

u(S, V \ S) =∑ij∈A uij xi (1 − xj )
[J.-C. Picard & H.D. Ratliff, 1975]: conversely, every quadratic polynomial 

f (x) = ½ xT Q x + bT x
in n binary variables with all non-diagonal quadratic coefficients  qij > 0 (i ≠ j) may 
be maximized by solving a minimum (s,t)-cut problem



Minimum (s,t)-cuts

Joint work with Jean-Claude Picard on minimum (s,t)-cuts 

• On the structure of all minimum cuts in a network and applications
(1980): the lattice structure of minimum cuts

• A network flow solution to some nonlinear 0‐1 programming 
problems, with applications to graph theory(1982): hyperbolic
optimization problems and nested parametric minimum cuts 

• Selected applications of minimum cuts in networks(1982), from the 
binary quadratic programming formulation and parametric properties

• Ranking the cuts and cut-sets of a network(with H. Hamacher, 1984)
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Minimum (s,t)-cuts as instances of algebraic lattices

• The intersection S∩S′ and the union S∪S′ of two minimum (s,t)-cuts Sand S′ are 
also minimum (s,t)-cuts [Ø. Ore, 1962]

• An (algebraic) lattice is a poset (partially ordered set) in which every two 
elements x and y have a greatest common lower bound, their meet x∧∧∧∧y, and a 
smallest common upper bound, their join x∨∨∨∨y

• Structure of sublattices of product spaces (products of chains, such as Rn or Zn) 
[D.M. Topkis, 1976; A.M. (Pete) Veinott, Jr., 1989]

Joint work with Fabio Tardellaon the structure of sublattices:
• Bimonotone linear inequalities and sublattices of  Rn (2006): characterize closed 

convex sublattices ofRn

• Sublattices of product spaces: Hulls, representation and counting(2008): 
representations with proper boundary epigraphs allow counting sublattices of 
finite products of finite chains, and yield a good characterization and a polytime 
algorithm for sublattice hull membership

• Carathéodory, Helly and Radon numbers for sublattice convexities (t.a.): exact  or 
approximate values of convexity invariants for several convexities defined by 
sublattices ofBn , Rn and Zn
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(s,t)-cut functions are submodular
The cut (capacity) function f : 2V→R, where f (S) = u(S, V \ S) is the capacity of the (s,t)-cut 
defined by S, satisfies the submodular inequality

f (S∩S′ ) + f (S∪S′ )  < f (S) + f (S′ )   for all S, S′ ⊂ V
Pioneering work of Jack Edmonds (1970) on submodular set functions, greedy algorithms and 
polymatroids (also L. Lovász, S. Fujishige, etc.)
• A general class of greedily solvable linear programs (with F. Spieksma & F. Tardella, 1998): 

duality relationship with transportation problems satisfying a Mongecondition
Applications to sequencing and scheduling:
• Structure of a simple scheduling polyhedron (1993): Smith’s rule (WSPT,  c-µ rule) is an 

instance of the polymatroid greedy algorithm in disguise (see also [L. Wolsey, 1985]) 
• Single machine scheduling with release dates (with M. Goemans, A. Schulz, M.Skutella& 

Y. Wang, 2002)
• Approximation algorithms for shop scheduling problems with minsum objective(with 

M.Sviridenko, 2002) 
• On the asymptotic optimality of a simple on-line algorithm for the stochastic single machine 

weighted completion time problem and its extensions(with C. Chou, H. Liu & D. Simchi-
Levi, 2006)
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Parametric minimum (s,t)-cuts

Let the arc capacities uij (λ) be functions of a parameter λ
Two key properties:
• Structural property: if the capacities of the source arcs (s,v) are increasing 

functions of λ and those of the sink arcs (v,t) decreasing functions of λ then 
minimum (s,t)-cuts S(λ) are increasing (nested) [M.J. Eisner & D.G. 
Severance, 1976; H.S. Stone, 1978; Picard & Q. 1982]

an instance of parametric submodular optimization [D.M. Topkis, 1978]
• Algorithmic property: full parametric analysis in about the same time as a 

single minimum (s,t)-cut computation [G. Gallo, M.D. Grigoriadis& 
R.E.Tarjan, 1989, known as “GGT ”]

Further extensions of structural and algorithmic properties:
• Monotone parametric min cut revisited: Structures and algorithms (with 

F.Granot, S.T. McCormick & F. Tardella, 2012) 
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Further applications of minimum (s,t)-cuts

• A study of the Bienstock-Zuckerbergalgorithm: Applications in 
mining and resource constrained project scheduling(with G. Muñoz, 
D. Espinoza, M. Goycoolea, E. Moreno & O. Rivera, submitted)

The Maxflow-Mincut Thm is a special case of the Kantorovich Duality 
of (infinite dimensional) optimal transport problems:

• Optimal pits and optimal transportation (with I. Ekeland, 2015): a 
continuous space optimum closure model 

• Combinatorial bootstrap inference in partially identified incomplete 
structural models (with M. Henry & R. Meango, 2015): an 
application to econometrics (extending work of I. Ekeland,  
A. Galichon & M. Henry) 
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Global minimum cuts and symmetric submodular functions

• There are simpler and faster algorithms for finding global minimum cuts 
in undirected networks than solving |V|-1 minimum (s,t)-cut problems 
[H.Nagamochi&T. Ibaraki, 1992; D.R. Karger, 1993; D.R. Karger & 
C.Stein, 1993]

Main thesis [Q 1999]: “most properties of global cuts are properties of 
symmetric submodular functions” 

• i.e., submodular set functions such that  f (S) = f (V \S) for all S⊆ V 

• Minimizing symmetric submodular functions(1998): a genuinely 
combinatorial O(|V|3) algorithm, extending the MA ordering approach of 
Nagamochi & Ibaraki

• Renewed interest in seeking combinatorial (non-ellipsoid) algorithms for 
minimizing (general) submodular set functions [A. Schrijver[EURO Gold Medal 
2015], 2000; S. Iwata, L. Fleischer & S. Fujishige, 2001; etc.]

• Applied to statistical physics [J.-Ch. Anglès d'Auriac, F. Iglói, M. Preissmann & 
A. Sebö, 2002] and clustering[M. Narasimhan, N. Jojic & J. Bilmes, 2005]
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Parametric global minimum cuts

• Parametric global minimum cuts lack the Structural and Algorithmic 
properties of parametric minimum (s,t)-cuts

However, whereas virtually every parametric combinatorial optimization 
problem has a super-polynomial number of (Pareto) efficient solutions 
(including minimum (s,t) cuts [P. Carstensen, 1983]), parametric global 
minimum cuts have a polynomial numberof efficient solutions, and 
polytime algorithms for enumerating them; e.g., for a single parameter λ:
• About O(|V|19 ) efficient solutions [K. Mulmuley, 1999]
• Strongly polynomial bounds for multiobjective and parametric global 

minimum cuts in graphs and hypergraphs (with H. Aissi, R. Mahjoub, 
S.T. McCormick, 2015): O(|V|7) efficient solutions

• Improved algorithms and insights [Karger, 2016]
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