

Euro Gold Medal 2010 Laureate Lecture

Rolf Möhring EURO XXIVIIISBON

My feelings

Joy, thanks, and pride

This is better than winning the soccer world cup

Thanks

To my family

Catharina

Laura

Raoul

Thanks to my group

Kombinatorische Optimierung und Graphenalgorithmen 🛠

Thanks to my research environment

- Study programs Business Mathematics, Industrial Mathematics
- Graduate programs (Graduiertenkollegs)
 - Combinatorics, Geometry and Computation
 - Berlin Mathematical School
- DFG Research Cluster (SPP) Algorithm Engineering
- BMBF Program Mathematics for Innovations in Industry
- EU Project Arrival Algorithms for Robust and Online Railway Optimization
- DFG Research Center MATHEON Mathematics for Key Technologies

Proud to be an Operations Researcher

My personal road in OR

The early years in Aachen (73-82)

Project scheduling

- Deterministic Scheduling
 - time-cost tradeoff
 - decomposition
 - scarce resources

Stochastic Scheduling

- classes of policies
- optimality
- o stability

Franz-Josef Radermacher Computer Science, Ulm

Getting broader (80-96)

PhD Gallery I of PhD students still in academia

Dorothea Wagner 1986 CompSci Karlsruhe

Stefan Felsner 1992 Math, Berlin

Jens Gustedt 1992 CompSci, Nancy, F

Rudolf Müller 1993 OR, Maastricht, NL

Andreas Schulz 1996 OR, MIT, USA

Markus Schäffter 1996 CompSci, Ulm

Research Topics (80-96)

- An algebraic decomposition theory
- Interval orders: recognition, structure, jump number
- Treewidth, pathwidth, chainminors of networks
- Polyhedral structure of scheduling polytopes
- Complexity of rescheduling
- Scheduling with communication delays

Back to Operations Research (1997 - now)

Scheduling in production and traffic

Routing in traffic, logistics and telecommunication

PhD Gallery 2 of PhD students still in academia

Matthias Müller-Hannemann 1987 CompSci, Halle

Martin Skutella 1998 Math, Berlin

Ekkehard Köhler 1999 Math, Cottbus

Marc Uetz 2001 Math, Twente, NL

Martin Oellrich 2008 CompSci, Berlin

Postdocs

Christian Liebchen 2006 DB Schenker

Nicole Megow 2006 CompSci, Saarbrücken

Sebastian Stiller 2008 OR, MIT, USA

Felix König 2009 Math, Berlin

Research Topics (97-now)

- Quadrilateral mesh generation
- Resource constrained project scheduling (RCPSP)
 - Lagrangian relaxation
 - LP-based approximation, also for stochastic case
 - Discrete time-cost tradeoff
- Routing problems and flows over time
- Acceleration of shortest path calculations
- Train Timetabling
- Robust optimization
- Algorithmic game theory

Projects in traffic and telecommunication

- Embedding VPNs into the base net of the German Telecom T··Systems·Nova
- Traffic management and flows over time

DAIMLERCHRYSLER Navigation und Verkehrsdienste

Bundesministerium für Bildung und Forschung

Constructing periodic timetables in public transport

traffic mobility logistics.

Coordinated traffic light control in networks

Bundesministerium für Bildung und Forschung

Projects in scheduling and logistics

- Routing of AGVs in the Hamburg harbor
- Ship Traffic Optimization for the Kiel Canal
- Turnaround scheduling in chemical plants
 T.A. Cook
 INEOS
- Scheduling and logistics in steel production PSI voestalpine
- Optimizing throughput at a dairy filling line

für Bilduna

und Forschung

Bundesministerium

Sequencing and Scheduling

conditions may depend on entire subsequences

cost depends on both

Example I: Slab logistics

[König, Lübbecke, Möhring, Schäfer, Spenke 2007]

transport by cranes or vehicles

Sorting with stacks is hard ...

Natural side constraints

- stacking restrictions (size, temperature)
- limited number of stacks
- limited stack heights
- lead to PSPACE-complete problem in general

... but rather easy in practice

- Use local search on state space
 - every node
 corresponds to a
 state of the pile
 yard
 - start node =
 current state
 - targets = deliveries
 to next production
 stage

Greedy search in the state space

- generate start state
- generate all neighbors
- evaluate them
- go to the best

Greedy is fast and gives good quality

bound for deviation from optimum number of moves in %

Iower bound obtained from relaxation solved by IP

Example 2: Coil coating

[Höhn, König, Lübbecke, Möhring 2009]

complex scheduling with shuttle coaters

Details about the scheduling phase

Subproblem:

 given fixed-order coil sequence, find tank assignment with minimum total idle time

- Setup work necessary if
 - color changes \rightarrow cleaning
 - coil has larger width than predecessor \rightarrow roller change
- \rightarrow concurrent setup work on idle tank saves idle time

Graph model for the scheduling phase

 k shuttle coaters
 no parallel concurrent setup

Combining sequencing and scheduling

Sequence generation with a fast genetic algorithm

Scheduling based on the insights from dyn. prog.

Example 3: Dairy production filling line [Gellert, Höhn, Möhring 2010]

charges of products need to be sequenced

run through a filling line

complex scheduling due to cleaning

- Jobs specified by
 - base, e.g. yoghurt, cream, . . .
 - fruit (optional) package
 - number of pallettes duration

- Setup/waiting due to
 - package/fruit/base change or cleaning
 - regular cleaning of line and tanks
 - limited size of tanks
 - minimum time lags

Details about the scheduling phase

Guarantee maximum distance d_{clean} between cleanings:

Respect limited size of cream tank

Solving the two classes of constraints

Can solve cleaning conditions fast via shortest paths

Can solve sequence and job dependent minimum distances by a simple greedy scan

Not clear how to do both together

Combining sequencing and scheduling

Sequence generation with a fast genetic algorithm

Scheduling based on the insights from analysis

Quality testing by an TSP lower bound show optimality gap of 2% for a weekly production

Summary

- Combining sequencing and scheduling is at the core of many applications
 - We can help with a good analysis and good algorithms
- But
 - We do not understand the integration well yet
 - Good IP models for lower bounds are very hard to obtain

There is much work left to be done