Optimal Design of Engineering
Structures






TRUSS TOPOLOGY DESIGN

Engineering Formulation: Given total volume of a truss
(construction comprised of thin elastic bars linked to each
other, like electricity mast or Eifel Tower), find the truss

which is most rigid with respect to a given set of external
loads.




Data/Design
Variables | Location | Connectivity | Bar Volumes
Problem of Nodes| Pattern (Cross Sec.
Type Areas)
Sizing + + ?
Topology + ? ?
? ? ?

Geometry
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russ Topology Design
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The simplest TTD problem is
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e Data:

— b; € R™, n — # of nodal degrees of freedom
(for a 10 x 10 x 10 ground structure, n ~ 3,000)

— m — # of tentative bars (for 10 x 10 x 10
ground structure, m ~ 500, 000)

e Design variables: t € R™, x € R"
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Figure 2: Triangle cantilever arm under tension (only
neighbours connected)
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Figure 3: Triangle cantilever arm under tension (all
connections)



Geometry and Topology Optimization
for 3-D Cantilever Arm

120 potential bars

17 bars;
compl. 6.944

z-coord. optimized
17 bars;
compl. 6.563

z- and z-coord. opt.
18 bars;
compl. 6.326



Multi-Load TTD

min maxk{ffzﬁj}
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CONVEX PROGRAM

dual var. j ALy .
<
t;f = g ( )\j ) <T V1

a conic quadratic constraint




Forces and fix points
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Starting solution




iteration number 10
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iteration number 400
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iteration number 600




iteration number 800




iteration number 1000




iteration number 2000




iteration number 3000




iteration number 8000




Can we trust the truss?
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Example: Assume we are designing a planar truss — a
cantilever; the 9 x 9 nodal structure and the only load
of interest f* are as shown on the picture:

® (e} (e} o o (e} (e} o o
® o o o o o o o o

® [¢] [¢] O ¢} [¢] [¢] O ¢}

9 x 9 ground structure and the load of interest

The optimal single-load design yields a nice truss as
follows:

Optimal cantilever (single-load design)
the compliance is 1.000
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Optimal cantilever (single-load design)
the compliance is 1.000
e It turns out that when the “load of interest” f* is
replaced with the small (|| f ||= 0.005 || f* |) “badly
placed” occasional load f, the compliance jumps from
1.000 to 8.4 (1)

¢ In order to improve the stability of the design, let us
replace the single load of interest f* by the ellipsoid
containing this load and all loads f of magnitude || f ||
not exceeding 10% of the magnitude of f*:

j'- - {f - H;f* +ﬂgfg+f3?£3+...+u2nﬁg{] I ’MTU E 1},

where fg, ey fg[] are of the norm 0.1 || f* " and fi:.l, fg? P fg(]
is an orthogonal basis in V = R,
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e Passing from the single-load to the robust design, we
modify the result as follows:

Optimal cantilever (single-load design)

4

“Robust” cantilever

Compliances Design
Single-load | Robust
Compliance w.r.t. f* 1.000 1.0024
max compliance w.r.t. 32000 1.03
loads f: || f[I<O.L]| f*] |




Convex Optimization in the
Service of Medicine



Basics

In most cases, the location and extent of a disease 1s unknown. The
first objective 1s to find efficient means of searching throughout the
body to determine the exact location of the disease.

Imaging is an extremely efficient process for accomplishing this
aim, because data are presented in pictorial form.

PET (Positron Emission Tomography) and SPET (Single Positron
Emission Tomography) provide the means for imaging the rates of
biologic processes in vivo.

Imaging 1s accomplished through the integration of two
technologies, the tracer kinetic assay method and computed
tomography (CT).




Data Acquisition




Application Example: 3D Imaging in Positron Emission Tomography

e -

% PET is a powerful non-invasive medical diagnostic imaging technique
for measuring the metabolic activity of cells in human body.

PET imaging is unique in that it shows the chemical functioning of
organs and tissues, not just anatomic structures.



% In PET, patient is administered radioactive tracer. The tracer con-
centrates in the the desired areas (e.g., those of high metabolic activ-

ity).

When disintegrating, the tracer emits positrons which annihilate with
near-by electrons and produce pairs of photons flying in opposite (com-
pletely random) directions at the speed of light. The photons nearly
simultaneously hit two detectors of PET scanner. This event is regis-
tered, thus specifying a Line Of Response passing through the disin-
tegration point.

% The data of PET reconstruction problem are given by (few millions
of) LORs registered by the scanner, and the problem is to recover the
distribution of the tracer.



% An idealized mathematical model of the PET imaging problem is to
recover a 2D (or 3D) density from its Radon transform — collection
of integrals of the density along all lines in R? (or R?).

# In reality, the Radon transform data registered by PET scanner are
incomplete, noisy and discretized, which badly affects the quality of
the Inverse Radon Transform imaging.

% Applying the Maximum Likelihood method, one ends up with the
following convex optimization problem:

11-1)311{ f) = - % yiln ( ) pij)\j) A20, %< 1} (PET)
1= J= 1=

e A € R™ discretized tracer’s density (design vector)
e y;, > 0 — # of LORs registered by i-th pair of detectors (data)
e p;; > 0 — probability for LOR originating from j-th grid point
to be registered by i-th pair of detectors (data)

& PET Imaging problems are extremely large-scale: in 3D,

e the design dimension n varies from 500,000 to 3,000,000
e the number m of log-terms in the objective varies from 3,000,000
to 25,000,000



& When solving typical nonlinear convex problems, the “price of ac-
curacy digit” for all known polynomial time algorithms is as large as
O(n?). With n ~ 10°, this price is by six (!) orders of magnitude larger
than the performance of modern computers (~ 1 Gfl/sec).

= With known polynomial time methods, one cannot solve in a realis-
tic time nonlinear convex problems with tens/hundreds of thousands
design variables: just the very first iteration will last forever...

Example: 3D Positron Emission Tomography Imaging by the ‘“best
fitting” IP method:

CPU time per iteration

(performance 1 Gfl/sec)
64 x 64 x 64 262,144 2,5 hours

128 x 128 x 128 | 2,097,152 > 13 days

image resolution n




econstruction Algorithm




MIRROR DESCENT METHOD
(Black-Box setting)

Problem
fr = SIC%I)I% f(x)
X convex compact set

f  convex Lipschitz continuous on X:

flx) —f)l < Lllz —yl]  Vz,yeX

f is given by a first-order oracle — a routine which,

given z € X, returns the value f(x) and a subgradient

().



Iteration ¢t given xy, f(x¢), f'(x¢)

. 1
LTi41 = argmin {th (y) + —Wwyg, (y)}

yex Yt
le,(y) = f(z)+ (y—x)" f'(z;) linearization of f
we, (y) = “distance” (y, x¢) localizer
1/ = penalty parameter

Classical Gradient Projection Method:

we(y) = |z — yl|5

e Best method for X = {z | ||z]|2 < 1}.



For X being a stmplex :

X={zx|Xx; =1, x>0}

(x; are “probabilities”) a classical distance function in
statistical information theory, etc. is the relative
entropy

w(y) = Xy log(yi/ ;) .

With this choice, we get the MD algorithms for

: Y o |
min f(x) simplex



Theorem 1 Let 2t be the best solution obtained up to

iteration t. Then

Flzt) = f. < 0(1) Ly (f)y/log 1 - %

e cfficiency estimate is essentially dimension free
e the MD algorithm is optimal for X = simplex

e similar result for min f(x)
reX= spectahedron

X={zxeS"|xz>=0, Trace(r) < 1}



ot Spheres Phantom (n=5152871)

# iteration

—+— MD (1 subset) —— GD (1 subset)

95e7; f,, =-5.230e7; f.>-5.283¢7




Hot Spheres (reconstruction by MD and OSMD)

after 2 iterations after 4 iteratiotis after 10 iterations

OSMD
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after 4 iterations after 10 iterations

after 2 iterations

Jaszczak Phantom (reconstruction by MD and OSMD)




& Fxperiment 1: noiseless measurements |(brighter image
correspond to higher tracer’s density )
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# Experiment 2: nolsy measurements (at average, 40 LOR's
per bright pixel, 63,002 LOR s totally):

Trus image 110 “hee spots”
Jo= —DEET

light iracus <f & wpaois
Jom =D

x* — i wpois in phica % - 1khk spa skl mriming...

F= 0707 fo= —0.E8

¥l LD wpotn in place 1 sll 10 spoks in pleos
Jo= —[ET2 F=—05%8




) study -clinical (reconstruction by MD and O
vance Tomograph, n=2,763,635, # bins=25,(

# iteration

—+— MD (1 subset)

, =—1.463e9; fosx =-2.009€9; f.>-2.050e9




B C aa——
Brain study -clinical (reconstruction by MD and OSMD)

GE Advance Tomograph, n=2,763,635, # bins=25,000,000




Optimization in Flight...



Application Example: Free Material Optimization

& FMO is a methodology for design of mechanical structures. In FMO,
one seeks how to distribute a given amount of elastic material over a
given domain in order to get a structure capable to withstand best of
all a given collection of external loads. It is assumed that

e the mechanical properties of the material (its rigidity tensor)
may vary, in an arbitrary fashion, from point to point;

e the rigidity of a construction w.r.t. a given external load is
measured by the compliance — potential energy capacitated by

the construction at the static equilibrium corresponding to the
load;

& The goal is, given the weight of the construction, to minimize its
largest, over a given set of loading scenarios, compliance.

& Usually it is technically impossible or too expensive to implement an
FMO design “as it is”. The role of FMO is in providing a good guess
for the structure of the would-be construction. After the structure
is guessed, the construction is designed from traditional materials via
standard engineering techniques.




% With Finite Element discretization, the Multi-Load FMO problem
is
( . ]
min ) max fESTH ) fo: ts = 0, = Tr(ty) < 1} (FMO)
| E=Lyeeny ? J

where

eti,i=1,.. N, are symmetric 3x3 (in 2D) or 6x6 (in 3D) variable
matrices (rigidity tensors of the material in Finite Element cells),
o fy, L = 1,..., K, are M-dimensional data vectors representing
loading scenarios,

o S(t) = Zbi;tz-bz-s is the M x M stiffness matrix of the construction.
.5

]

& In a realistic 2D FMO problem,

e the number N of Finite Element cells is tens of thousands
= design dimension of (FMO) is of order of 50,000 — 200,000
e the size M of the stiffness matrix is ~ 2N

= it is a nontrivial problem just to compute the objective!



IMPROVING MD

& Utilizing past information. A severe practical disadvantage of SD/MD

1s that they are memoryless: they use the first-order information only
from the last step. Free of this drawback modifications of Subgradient
Descent — bundle methods — are well-known and widely used.

& Recently, the first bundle version of Mirror Descent was developed
(Non-Euclidean Restricted Memory Level method, Ben-Tal and
Nemirovski 2004). The NERML algorithm

exhibits the same theoretical rates of convergence as the MD

in practice, provides full control of how the accumulated
information 1s utilized and thus allows for tradeoff between
iteration complexity and convergence rate.



The FMO problem is to minimize a convex function
F : 5" — R over a spectahedron X

min{F'(t) |t € S", t =0, Tr(t) <1}

Here, when employing the MD /NERML algorithms,
the choice of the “distance function” is based on the

“entropy” function w : S™ — R given by

w(S)=Tr(S+ocl)log(S+acl), oc=4d/n

The major step in the MD/NERML algorithms at each
iteration is to solve a problem of the following type

min{w(S) + P* S}
which is here

gréi)rg{Tr(S +ol)log(S+ol)+Tr(PS)} (1)



Let U be an orthogonal matrix diagonalizing P, i.e.
P=UdUY  d= diagonal
Substitute for S a new matrix variable
y=USU"
problem (1) becomes

;Iéi)r(l{TT(y +ol)log(y +ol)+ Tr(dy)} (2)
/! T

This function depends only on the diagonal

eigenvalues of y + ol



;Iéi)f(l{T?“(y—FO'I) log(y+ol)+Tr(dy)} (2)

Let J be a matrix J = diag(%1). Then
y+ol and J(y+ol)J =JyJ +ol

all have the same eigenvalues.

Also, since d is diagonal:

Tr(dy) =Tr(JdJy) =Tr(dJyJ)

It follows that replacing y in the objective function of
(2) with JyJ, we get the same value (INVARIANCE)



Conclusion I If y* solves (2), then Jy*J also solves
(2) for any matrix J = diag(+£1).

Conclusion II The average overall 2 matrices of type
J of the solution Jy*J, i.e.

(1/2") Y (Jy*J)

is also an optimal solution. BUT, this latter matrix is

exactly

diag(y™)



Conclusion III Problem (1) reduces to (2) which

reduces to:

min >_(G +0)log(Ci + o) + di;

st > ¢G<1 (3)
G >0

This problem can be solved (almost) explicitly!



Design of stiffeners: MOPED & MBB-LAGRANGE




Design of stiffeners: MOPED & MBB-LAGRANGE




Reference design

FMO based design
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Wing element for Aerobus A380 Implementation, Erlangen
FMO design by NERML University and European Aero
80 iterations Defence and Space Co.
n = 39,780, N =6,630, M =13,84

Free Material Optimization: element of aircraft wing
FMO allowed for 17% reduction in element’s weight



Based on computational results for maximum stiffness and quite a
bit of engineering interpretation a new type of structure was
devised for the ribs which gave a weight benefit against traditional
and competitive honeycomb/ composite designs (up to 40% !)

A total weight saving of more than 500 kg per wing was obtained
by optimizing the ribs in the area shown. These are now — since
April 27, 2005 - the first topology optimized parts in flight.
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