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Truss Topology Design
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The simplest TTD problem is

Compliance = 1
2fT x → min

s.t.

[
m∑

i=1

tibib
T
i

]

︸ ︷︷ ︸

A(t)�0

x = f

m∑

i=1

ti ≤ w

t ≥ 0

• Data:

— bi ∈ Rn, n – # of nodal degrees of freedom

(for a 10 × 10 × 10 ground structure, n ≈ 3, 000)

— m – # of tentative bars (for 10 × 10 × 10

ground structure, m ≈ 500, 000)

• Design variables: t ∈ Rm, x ∈ Rn

3









Multi-Load TTD

(P) min
xj ,t

max
j=1,...,k

{fT
j xj}

s.t.

m∑

i=1

tiAixj = fj

m∑

i=1

ti = v

ti = 0 , i = 1, . . . , m

xj ∈ IRn, j = 1, . . . , k

min
xj ,...,xk

λ∈Rk







k∑

j=1

fT
j xj + v · max

i=1,...,m







K∑

j=1

xT
j Aixj

λj













s.t.
k∑

j=1

λj = 1, λ ≥ 0 .

6



CONVEX PROGRAM

min

x1,...,xk

λ∈IRk

τ∈IR

{∑

fT
j xj + vτ

}

∑

λj = 1, λ ≥ 0

dual var.
t∗j

⇒
∑

j

(

xT
j Ajxj

λj

)

≤ τ

︸ ︷︷ ︸

a conic quadratic constraint

∀ i
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Can we trust the truss?
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Example: Assume we are designing a planar truss { a
cantilever; the 9� 9 nodal structure and the only load
of interest f� are as shown on the picture:

9� 9 ground structure and the load of interest

The optimal single-load design yields a nice truss as
follows:
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Optimal cantilever (single-load design)
the compliance is 1.000







Convex Optimization in the
Service of Medicine

3



BasicsBasics
� In most cases, the location and extent of a disease is unknown. The 

first objective is to find efficient means of searching throughout the 
body to determine the exact location of the disease.

� Imaging is an extremely efficient process for accomplishing this
aim, because data are presented in pictorial form.

� PET  (Positron Emission Tomography) and SPET (Single Positron 
Emission Tomography)  provide the means for imaging the rates of
biologic processes in vivo.

� Imaging is accomplished through the integration of two 
technologies, the tracer kinetic assay method and computed 
tomography (CT). 



Data AcquisitionData Acquisition











Reconstruction AlgorithmsReconstruction Algorithms



MIRROR DESCENT METHOD

(Black-Box setting)

Problem

f∗ = min
x∈X

f(x)

X convex compact set

f convex Lipschitz continuous on X:

|f(x)− f(y)| ≤ L‖x− y‖ ∀x, y ∈ X

f is given by a first-order oracle — a routine which,
given x ∈ X, returns the value f(x) and a subgradient
f ′(x).
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Iteration t given xt, f(xt), f ′(xt)

xt+1 = arg min
y∈X

{
`xt(y) +

1
γt

ωxt(y)
}

`xt(y) = f(xt) + (y − xt)T f ′(xt) linearization of f

ωxt(y) = “distance”(y, xt) localizer

1/γt = penalty parameter

Classical Gradient Projection Method:

ωx(y) = ‖x− y‖22

• Best method for X = {x | ‖x‖2 ≤ 1}.
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For X being a simplex :

X = {x | Σxi = 1, x ≥ 0}

(xi are “probabilities”) a classical distance function in
statistical information theory, etc. is the relative
entropy

ωx(y) = Σyi log(yi/xi) .

With this choice, we get the MD algorithms for

min
x∈X

f(x) X = simplex.
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Theorem 1 Let xt be the best solution obtained up to
iteration t. Then

f(xt)− f∗ ≤ 0(1)L1(f)
√

log n · 1√
t

• efficiency estimate is essentially dimension free

• the MD algorithm is optimal for X = simplex

• similar result for min
x∈X= spectahedron

f(x)

X = {x ∈ Sn | x º 0 , Trace(x) ≤ 1}
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Hot Spheres Phantom (n=515,871)
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Hot Spheres (reconstruction by MD and OSMD)



Jaszczak Phantom (n=515,871)
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Jaszczak Phantom (reconstruction by MD and OSMD)







Brain  study -clinical (reconstruction by MD and OSMD)
GE Advance Tomograph,  n=2,763,635, # bins=25,000,000
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Brain  study -clinical (reconstruction by MD and OSMD)
GE Advance Tomograph,  n=2,763,635, # bins=25,000,000



Optimization in Flight...

4







IMPROVING MD

♣ Utilizing past information.  A severe practical disadvantage of SD/MD 
is that they are memoryless: they use the first-order information only 
from the last step.  Free of this drawback modifications of Subgradient
Descent – bundle methods – are well-known and widely used.

♠ Recently, the first bundle version of Mirror Descent was developed 
(Non-Euclidean Restricted Memory Level method, Ben-Tal and 
Nemirovski 2004).  The NERML algorithm
• exhibits the same theoretical rates of convergence as the MD
• in practice, provides full control of how the accumulated 

information is utilized and thus allows for tradeoff between 
iteration complexity and convergence rate.



The FMO problem is to minimize a convex function
F : Sn → R over a spectahedron X

min{F (t) | t ∈ Sn, t º 0, T r(t) ≤ 1}

Here, when employing the MD/NERML algorithms,
the choice of the “distance function” is based on the
“entropy” function ω : Sn → R given by

ω(S) = Tr(S + σI) log(S + σI), σ = δ/n

The major step in the MD/NERML algorithms at each
iteration is to solve a problem of the following type

min{ω(S) + PT S}

which is here

min
S∈X

{Tr(S + σI) log(S + σI) + Tr(PS)} (1)
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Let U be an orthogonal matrix diagonalizing P , i.e.

P ≡ UdUT d = diagonal

Substitute for S a new matrix variable

y = USUT

problem (1) becomes

min
y∈X

{Tr(y + σI) log(y + σI) + Tr(dy)} (2)
↗ ↑

This function depends only on the diagonal

eigenvalues of y + σI
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min
y∈X

{Tr(y +σI) log(y +σI)+Tr(dy)} (2)

Let J be a matrix J = diag(±1). Then

y + σI and J(y + σI)J = JyJ + σI

all have the same eigenvalues.

Also, since d is diagonal:

Tr(dy) = Tr(JdJy) = Tr(dJyJ)

It follows that replacing y in the objective function of
(2) with JyJ , we get the same value (INVARIANCE)
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Conclusion I If y∗ solves (2), then Jy∗J also solves
(2) for any matrix J = diag(±1).

Conclusion II The average overall 2n matrices of type
J of the solution Jy∗J , i.e.

(1/2n)
∑

(Jy∗J)

is also an optimal solution. BUT, this latter matrix is
exactly

diag(y∗)
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Conclusion III Problem (1) reduces to (2) which
reduces to:




min
ζ∈IRn

∑
(ζi + σ) log(ζi + σ) + diζi

s.t.
∑

ζi ≤ 1

ζi ≥ 0

(3)

This problem can be solved (almost) explicitly!
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Based on computational results for maximum stiffness and quite a
bit of engineering interpretation a new type of structure was 
devised for the ribs which gave a weight benefit against traditional 
and competitive honeycomb/ composite designs (up to 40% !) 

A total weight saving of more than 500 kg per wing was obtained 
by optimizing the ribs in the area shown. These are now — since 
April 27, 2005 - the first topology optimized parts in flight.
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